Investigating BB0405 as a novel Borrelia afzelii vaccination candidate in Lyme borreliosis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33637813
PubMed Central
PMC7910573
DOI
10.1038/s41598-021-84130-y
PII: 10.1038/s41598-021-84130-y
Knihovny.cz E-zdroje
- MeSH
- Borrelia burgdorferi komplex imunologie MeSH
- Borrelia burgdorferi imunologie MeSH
- DNA vakcíny imunologie terapeutické užití MeSH
- imunogenicita vakcíny MeSH
- lymeská nemoc imunologie prevence a kontrola MeSH
- myši inbrední C3H MeSH
- myši MeSH
- proteiny vnější bakteriální membrány imunologie terapeutické užití MeSH
- rekombinantní proteiny imunologie terapeutické užití MeSH
- tvorba protilátek MeSH
- vakcína proti lymeské nemoci imunologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BB0405 protein, Borrelia burgdorferi MeSH Prohlížeč
- DNA vakcíny MeSH
- proteiny vnější bakteriální membrány MeSH
- rekombinantní proteiny MeSH
- vakcína proti lymeské nemoci MeSH
BB0405 is a surface exposed Borrelia burgdorferi protein and its vaccination protected mice against B. burgdorferi infection. As BB0405 is highly conserved across different B. burgdorferi sensu lato species, we investigated whether vaccination with recombinant BB0405 or through intradermal bb0405 DNA tattoo vaccination could provide protection against different Borrelia species, specifically against Borrelia afzelii, the predominant B. burgdorferi sensu lato genospecies causing Lyme borreliosis across Eurasia. We immunized C3H/HeN mice with recombinant BB0405 or with a codon-optimized bb0405 DNA vaccine using the pVAC plasmid and immunized corresponding control groups mice with only adjuvant or empty vectors. We subsequently subjected these immunized mice to a tick challenge with B. afzelii CB43-infected Ixodes ricinus nymphs. Upon vaccination, recombinant BB0405 induced a high total IgG response, but bb0405 DNA vaccination did not elicit antibody responses. Both vaccine formulations did not provide protection against Borrelia afzelii strain CB43 after tick challenge. In an attempt to understand the lack of protection of the recombinant vaccine, we determined expression of BB0405 and showed that B. afzelii CB43 spirochetes significantly and drastically downregulate the expression of BB0405 protein at 37 °C compared to 33 °C, where as in B. burgdorferi B31 spirochetes expression levels remain unaltered. Vaccination with recombinant BB0405 was previously shown to protect against B. burgdorferi sensu stricto. Here we show that vaccination with either recombinant BB0405 (or non-immunogenic bb0405 DNA), despite being highly conserved among B. burgdorferi sl genospecies, does not provide cross-protection against B. afzelii, mostly likely due to downregulation of this protein in B. afzelii in the mammalian host.
Zobrazit více v PubMed
Radolf JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 2012;10:87–99. doi: 10.1038/nrmicro2714. PubMed DOI PMC
Hovius JW, van Dam AP, Fikrig E. Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol. 2007;23:434–438. doi: 10.1016/j.pt.2007.07.001. PubMed DOI
Pulzova L, Bhide M. Outer surface proteins of Borrelia: Peerless immune evasion tools. Curr. Protein Pept. Sci. 2014;15:75–88. doi: 10.2174/1389203715666140221124213. PubMed DOI
Kenedy MR, Lenhart TR, Akins DR. The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol. Med. Microbiol. 2012;66:1–19. doi: 10.1111/j.1574-695X.2012.00980.x. PubMed DOI PMC
Steere AC, et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med. 1998;339:209–215. doi: 10.1056/nejm199807233390401. PubMed DOI
Brooks CS, Vuppala SR, Jett AM, Akins DR. Identification of Borrelia burgdorferi outer surface proteins. Infect. Immun. 2006;74:296–304. doi: 10.1128/iai.74.1.296-304.2006. PubMed DOI PMC
Shrestha B, Kenedy MR, Akins DR. Outer membrane proteins BB0405 and BB0406 are immunogenic, but only BB0405 is required for Borrelia burgdorferi infection. Infect. Immun. 2017;85:66. doi: 10.1128/iai.00803-16. PubMed DOI PMC
Kung F, et al. A Borrelia burgdorferi surface-exposed transmembrane protein lacking detectable immune responses supports pathogen persistence and constitutes a vaccine target. J. Infect. Dis. 2016;213:1786–1795. doi: 10.1093/infdis/jiw013. PubMed DOI PMC
Bins AD, et al. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat. Med. 2005;11:899–904. doi: 10.1038/nm1264. PubMed DOI
Wagemakers A, et al. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection. Gene Ther. 2014;21:1051–1057. doi: 10.1038/gt.2014.87. PubMed DOI
Zhong W, et al. Therapeutic passive vaccination against chronic Lyme disease in mice. Proc. Natl. Acad. Sci. USA. 1997;94:12533–12538. doi: 10.1073/pnas.94.23.12533. PubMed DOI PMC
Fikrig E, et al. Sera from patients with chronic Lyme disease protect mice from Lyme borreliosis. J. Infect. Dis. 1994;169:568–574. doi: 10.1093/infdis/169.3.568. PubMed DOI
Connolly SE, Benach JL. The versatile roles of antibodies in Borrelia infections. Nat. Rev. Microbiol. 2005;3:411–420. doi: 10.1038/nrmicro1149. PubMed DOI
Yang X, et al. Analysis of Borrelia burgdorferi proteome and protein–protein interactions. Methods Mol. Biol. 2018;1690:259–277. doi: 10.1007/978-1-4939-7383-5_19. PubMed DOI
Yang X, et al. Characterization of multiprotein complexes of the Borrelia burgdorferi outer membrane vesicles. J. Proteome Res. 2011;10:4556–4566. doi: 10.1021/pr200395b. PubMed DOI PMC
Phelan JP, et al. Genome-wide screen identifies novel genes required for Borrelia burgdorferi survival in its Ixodes tick vector. PLoS Pathog. 2019;15:e1007644. doi: 10.1371/journal.ppat.1007644. PubMed DOI PMC
Ojaimi C, et al. Profiling of temperature-induced changes in Borrelia burgdorferi gene expression by using whole genome arrays. Infect. Immun. 2003;71:1689–1705. doi: 10.1128/iai.71.4.1689-1705.2003. PubMed DOI PMC
Angel TE, et al. Proteome analysis of Borrelia burgdorferi response to environmental change. PLoS ONE. 2010;5:e13800. doi: 10.1371/journal.pone.0013800. PubMed DOI PMC
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC
Zhang JR, Norris SJ. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect. Immun. 1998;66:3698–3704. doi: 10.1128/IAI.66.8.3698-3704.1998. PubMed DOI PMC
Bankhead T, Chaconas G. The role of VlsE antigenic variation in the Lyme disease spirochete: Persistence through a mechanism that differs from other pathogens. Mol. Microbiol. 2007;65:1547–1558. doi: 10.1111/j.1365-2958.2007.05895.x. PubMed DOI
Coutte L, Botkin DJ, Gao L, Norris SJ. Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. PLoS Pathog. 2009;5:e1000293. doi: 10.1371/journal.ppat.1000293. PubMed DOI PMC
Gilmore RD, Jr, et al. Temporal expression analysis of the Borrelia burgdorferi paralogous gene family 54 genes BBA64, BBA65, and BBA66 during persistent infection in mice. Infect. Immun. 2007;75:2753–2764. doi: 10.1128/iai.00037-07. PubMed DOI PMC
Bunikis J, Barbour AG. Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins. Infect. Immun. 1999;67:2874–2883. doi: 10.1128/IAI.67.6.2874-2883.1999. PubMed DOI PMC
Consortium, T. U UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Grote A, et al. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33:W526–531. doi: 10.1093/nar/gki376. PubMed DOI PMC
Hovius JW, et al. Preferential protection of Borrelia burgdorferi sensu stricto by a Salp15 homologue in Ixodes ricinus saliva. J. Infect. Dis. 2008;198:1189–1197. doi: 10.1086/591917. PubMed DOI PMC
Ruijter JM, et al. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45. doi: 10.1093/nar/gkp045. PubMed DOI PMC
Yang X, et al. Characterization of unique regions of Borrelia burgdorferi surface-located membrane protein 1. Infect. Immun. 2010;78:4477–4487. doi: 10.1128/iai.00501-10. PubMed DOI PMC
Coleman AS, et al. Borrelia burgdorferi complement regulator-acquiring surface protein 2 does not contribute to complement resistance or host infectivity. PLoS ONE. 2008;3:3010e. doi: 10.1371/journal.pone.0003010. PubMed DOI PMC
Mulay V, et al. Borrelia burgdorferi BBA74, a periplasmic protein associated with the outer membrane, lacks porin-like properties. J. Bacteriol. 2007;189:2063–2068. doi: 10.1128/jb.01239-06. PubMed DOI PMC