Antarctic Lichens under Long-Term Passive Warming: Species-Specific Photochemical Responses to Desiccation and Heat Shock Treatments
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RT2716
Instituto Antártico Chileno
FONDECYT 1181745
Agencia Nacional de Investigación y Desarrollo
PubMed
36235326
PubMed Central
PMC9572451
DOI
10.3390/plants11192463
PII: plants11192463
Knihovny.cz E-resources
- Keywords
- chlorophyll fluorescence, climate change, nitrogen isotope, thermal shock,
- Publication type
- Journal Article MeSH
Climate warming in the Antarctic tundra will affect locally dominant cryptogams. Being adapted to low temperatures and freezing, little is known about the response of the polar lichens' primary photochemistry to warming and desiccation. Since 2008, we have monitored the ecophysiological responses of lichens to the future warming scenario during a long-term warming experiment through open top chambers (OTCs) on Fildes Peninsula. We studied the primary photochemical response (potential Fv/Fm and effective efficiency of photosystem II YPSII) of different lichen taxa and morphotypes under desiccation kinetics and heat shock experiments. As lichens grow slowly, to observe changes during warming we methodologically focused on carbon and nitrogen content as well as on the stable isotope ratios. Endemic Himantormia lugubris showed the strongest effect of long-term warming on primary photochemistry, where PSII activity occurred at a lower %RWC inside the OTCs, in addition to higher Fv/Fm values at 30 °C in the heat shock kinetic treatment. In contrast, Usnea aurantiaco-atra did not show any effect of long-term warming but was active at a thallus RWC lower than 10%. Both Cladonia species were most affected by water stress, with Cladonia aff. gracilis showing no significant differences in primary photochemical responses between the warming and the control but a high sensibility to water deficiency, where, at 60% thallus RWC, the photochemical parameters began to decrease. We detected species-specific responses not only to long-term warming, but also to desiccation. On the other hand, the carbon content did not vary significantly among the species or because of the passive warming treatment. Similarly, the nitrogen content showed non-significant variation; however, the C/N ratio was affected, with the strongest C/N decrease in Cladonia borealis. Our results suggest that Antarctic lichens can tolerate warming and high temperature better than desiccation and that climate change may affect these species if it is associated with a decrease in water availability.
See more in PubMed
Gutiérrez J.M., Jones R.G., Narisma G.T., Alves L.M., Amjad M., Gorodetskaya I.V., Grose M., Klutse N.A.B., Krakovska S., Li J., et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: 2011. [(accessed on 5 March 2021)]. Atlas. IPCC WGI Interactive Atlas. In press. Available online: http://interactive-atlas.ipcc.ch/
Robinson S.A., Klekociuk A.R., King D.H., Pizarro Rojas M., Zúñiga G.E., Bergstrom D.M. The 2019/2020 summer of Antarctic heatwaves. Glob. Change Biol. 2020;26:3178–3180. doi: 10.1111/gcb.15083. PubMed DOI
Turner J., Lu H., King J.C., Carpentier S., Lazzara M., Phillips T., Wille J. An extreme high temperature event in coastal east antarctica associated with an atmospheric river and record summer downslope winds. Geophys. Res. Lett. 2022;49:e2021GL097108. doi: 10.1029/2021GL097108. DOI
Skansi M.D.L.M., Colwell S., Bromwich D.H., Jones P., King J.C., Lazzara M.A., Renwick J., Solomon S., Brunet M., Cerveny R.S. WMO evaluation of two extreme high temperatures occurring in february 2020 for the Antarctic Peninsula Region. Bull. Am. Meteorol. Soc. 2021;102:E2053–E2061. doi: 10.1175/BAMS-D-21-0040.1. DOI
González-Herrero S., Barriopedro D., Trigo R.M., López-Bustins J.A., Oliva M. Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula. Commun. Earth Environ. 2022;3:122. doi: 10.1038/s43247-022-00450-5. DOI
Lee J.R., Waterman M.J., Shaw J.D., Bergstrom D.M., Lynch H.J., Wall D.H., Robinson S.A. Islands in the ice: Potential impacts of habitat transformation on Antarctic biodiversity. Glob. Chang. Biol. 2022;28:5865–5880. doi: 10.1111/gcb.16331. PubMed DOI PMC
Peat H.J., Clarke A., Convey P. ORIGINAL ARTICLE: Diversity and biogeography of the Antarctic flora. J. Biogeogr. 2006;34:132–146. doi: 10.1111/j.1365-2699.2006.01565.x. DOI
Green T.G.A., Sancho L.G., Pintado A., Schroeter B. Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol. 2011;34:1643–1656. doi: 10.1007/s00300-011-1058-2. DOI
Seppelt R.D., Broady P.A. Antarctic terrestrial ecosystems: The Vestfold Hills in context. Hydrobiologia. 1988;165:177–184. doi: 10.1007/BF00025586. DOI
Convey P., Gibson J.A.E., Hillenbrand C.-D., Hodgson D., Pugh P.A., Smellie J.L., Stevens M.I. Antarctic terrestrial life—Challenging the history of the frozen continent? Biol. Rev. 2008;83:103–117. doi: 10.1111/j.1469-185X.2008.00034.x. PubMed DOI
Tuner J., Bindschadler R., Convey P., Prisco G.D., Fahrbach E., Gutt J., Hodgson D., Mayewski P., Summerhayes C. Summerhayes, C. Antarctic Climate Change and the Environment. Scientific Committee on Antarctic Research; Cambridge, UK: 2009.
Armstrong R.A. Plant Adaptation Strategies in Changing Environment. Springer; Singapore: 2017. Adaptation of lichens to extreme conditions; pp. 1–17.
Øvstedal D.O., Smith R.L. Lichens of Antarctica and South Georgia: A Guide to Their Identification and Ecology. Cambridge University Press; Cambridge, UK: 2001.
Nach T. Lichen Biology. Cambridge University Press; Cambridge, UK: New York, NY, USA: Melbourne, Australia: Madrid, Spain: Cape Town, South Africa: Singapore: São Paulo, Brazil: 2008.
Honegger R. Water relations in lichen. Water Fungi Environ. Lichen Biol. 2006:185–200. doi: 10.1017/CBO9780511541797.010. DOI
Hájek J., Barták M., Hazdrová J., Forbelská M. Sensitivity of photosynthetic processes to freezing temperature in extremo- philic lichens evaluated by linear cooling and chlorophyll fluo- rescence. Cryobiology. 2016;73:329–334. doi: 10.1016/j.cryobiol.2016.10.002. PubMed DOI
Kappen L., Schroeter B. Activity of lichens under the influence of snow and ice. Proc. NIPR Symp. Polar Biol. 1997;10:163–168.
Barták M., Váczi P., Hájek J., Smykla J. Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biol. 2007;31:47–51. doi: 10.1007/s00300-007-0331-x. DOI
Colesie C., Büdel B., Hurry V., Green T.G.A. Can Antarctic lichens acclimatize to changes in temperature? Glob. Change Biol. 2017;24:1123–1135. doi: 10.1111/gcb.13984. PubMed DOI
Sancho L., Ríos A.D.L., Pintado A., Colesie C., Raggio J., Ascaso C., Green A. Himantormia lugubris, an Antarctic endemic on the edge of the lichen symbiosis. Symbiosis. 2020;82:49–58. doi: 10.1007/s13199-020-00723-7. DOI
Green T.G.A., Sancho L.G., Pintado A. Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Luttge U., Beck E., Bartels D., editors. Plant Desiccation Tolerance. Volume 215. Springer; Berlin/Heidelberg, Germany: 2011. pp. 89–120.
Green T.G.A., Schroeter B., Sancho L.G. Plant life in Antarctica. In: Pugnaire F.I., Valladares F., editors. Handbook of Functional Plant Ecology. Marcel Dekker Inc.; New York, NY, USA: 2007.
Barták M., Hájek J., Morkusová J., Skácelová K., Košuthová A. Dehydration-induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont. Acta Physiol. Plant. 2018;40:177.
Cho S.M., Lee H., Hong S.G., Lee J. Study of ecophysiological responses of the Antarctic Fruticose Lichen Cladonia borealis using the PAM fluorescence system under natural and laboratory conditions. Plants. 2020;9:85. doi: 10.3390/plants9010085. PubMed DOI PMC
Barták M., Hájek J., Orekhova A., Villagra J., Marín C., Palfner G., Casanova-Katny A. Inhibition of primary photosynthesis in dissicating antarctic lichens differing in their photobionts, thallus morphology, and spectral properties. Microorganisms. 2021;9:818. doi: 10.3390/microorganisms9040818. PubMed DOI PMC
Lange O.L., Green T.G.A., Heber U. Hydration-dependent photosynthetic production of lichens: What do laboratory studies tell us about field performance? J. Exp. Bot. 2001;52:2033–2042. doi: 10.1093/jexbot/52.363.2033. PubMed DOI
Casanova-Katny A., Barták M., Gutierrez C. Open top chamber microclimate may limit photosynthetic processes in Antarctic lichen: Case study from King George Island, Antarctica. Czech Polar Rep. 2019;9:61–77. doi: 10.5817/CPR2019-1-6. DOI
Xu S.Y., Huang H., Song W., Liu X.Y. Lichen nitrogen concentrations and isotopes for indicating nitrogen deposition levels and source changes. Sci. Total Environ. 2021;787:147616. doi: 10.1016/j.scitotenv.2021.147616. DOI
Bokhorst S., Convey P., Aerts R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr. Biol. 2019;29:1721–1727. doi: 10.1016/j.cub.2019.04.038. PubMed DOI
Munzi S., Pisani T., Paoli L., Renzi M., Loppi S. Variation and evolution of C: N ratio among different organs enable plants to adapt to N-limited environments. Glob. Change Biol. 2020;26:2534–2543. PubMed
Munzi S., Pisani T., Paoli L., Renzi M., Loppi S. Effect of nitrogen supply on the C/N balance in the lichen Evernia prunastri (L.) Ach. Turk. J. Biol. 2013;37:165–170. doi: 10.3906/biy-1205-4. DOI
Greenfield L. Retention of precipitation nitrogen by Antarctic mosses, lichens and fellfield soils. Antarct. Sci. 1992;4:205–206. doi: 10.1017/S0954102092000312. DOI
Hovenden M.J. Seasonal trends in nitrogen status of Antarctic Lichens. Ann. Bot. 2000;86:717–721. doi: 10.1006/anbo.2000.1248. DOI
Walker M.D., Wahren C.H., Hollister R.D., Henry G.H.R., Ahlquist L.E., Alatalo J.M., Bret-Harte M.S., Calef M.P., Callaghan T.V., Carroll A.B., et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA. 2006;103:1342–1346. doi: 10.1073/pnas.0503198103. PubMed DOI PMC
Shortlidge E.E., Eppley S.M., Kohler H., Rosenstiel T.N., Zúñiga G.E., Casanova-Katny A. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum. Ann. Bot. 2017;119:27–38. doi: 10.1093/aob/mcw201. PubMed DOI PMC
Prather H.M., Casanova-Katny A., Clements A.F., Chmielewski M.W., Balkan M., Shortlidge E.E., Rosenstiel T.N., Eppley S.M. Species-specific effects of passive warming in an Antarctic moss system. R. Soc. Open Sci. 2019;6:190744. doi: 10.1098/rsos.190744. PubMed DOI PMC
Nayaka S., Rai H. Assessing the Antarctic Environment from a Climate Change Perspective. Springer; Cham, Switzerland: 2022. Antarctic Lichen Response to Climate Change: Evidence from Natural Gradients and Temperature Enchantment Experiments; pp. 235–253. Earth and Environmental Sciences Library.
Sancho L.G., Pintado A., Navarro F., Ramos M., de Pablo M., Blanquer J.M., Raggio J., Valladares F., Green T.G.A. Recent warming and cooling in the Antarctic Peninsula region has rapid and large effects on lichen vegetation. Sci. Rep. 2017;7:5689. doi: 10.1038/s41598-017-05989-4. PubMed DOI PMC
Bokhorst S., Convey P., Huiskes A., Aerts R. Usnea antarctica, an important Antarctic lichen, is vulnerable to aspects of regional environmental change. Polar Biol. 2016;39:511–521. doi: 10.1007/s00300-015-1803-z. DOI
Kennedy A.D. Simulated climate change: Are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Glob. Chang. Biol. 1995;1:29–42. doi: 10.1111/j.1365-2486.1995.tb00004.x. DOI
Schroeter B., Green T.G.A., Pintado A., Türk R., Sancho L.G. Summer activity patterns for a moss and lichen in the maritime Antarctic with respect to altitude. Polar Biol. 2021;44:2117–2137. doi: 10.1007/s00300-021-02939-9. DOI
Olech M. Lichens of King George Island, Antartica. The Institute of Botany of the Jagiellonian University; Kraków, Poland: 2004.
Ochyra R., Lewis Smith R.I., Bednarek-Ochyra H. The Illustrated Moss Flora of Antarctica. Cambridge University Press; Cambridge, UK: 2008. p. 704.
Puhovkin A., Bezsmertna O., Parnikoza I. Interspecific differences in desiccation tolerance of selected Antarctic lichens: Analysis of photosystem II effectivity and quenching mechanisms. Czech Polar Rep. 2022;12:31–43. doi: 10.5817/CPR2022-1-3. DOI
Kappen L., Kappen L. Lichen Physiology and Cell Biology. Springer; Boston, MA, USA: 1985. Water relations and net photosynthesis of Usnea. A comparison between Usnea fasciata (maritime Antarctic) and Usnea sulphurea (continental Antarctic) pp. 41–56.
Harrisson P., Rothery P. Net CO2 exchange in relation to thallus moisture and temperature in two fruticose lichens Usnea antarctica and Usnea aurantiaco-atra from the maritime Antarctic. Polarforschung. 1988;58:171–179.
Perera-Castro A.V., Waterman M.J., Turnbull J.D., Ashcroft M.B., McKinley E., Watling J.R., Bramley-Alves J., Casanova-Katny A., Zuniga G., Flexas J., et al. It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Front. Plant Sci. 2020;11:1178. doi: 10.3389/fpls.2020.01178. PubMed DOI PMC
Bednaříková M., Folgar-Cameán Y., Kučerová Z., Lazár D., Špundová M., Hájek J., Barták M. Analysis of K-and L-band appearance in OJIPs in Antarctic lichens in low and high temperature. Photosynthetica. 2020;58:646–656. doi: 10.32615/ps.2019.180. DOI
Kappen L., Redon J. Photosynthesis and Water Relations of Three Maritime Antarctic Lichen Species. Flora-Morphol. Distrib. Funct. Ecol. Plants. 1987;179:215–229. doi: 10.1016/S0367-2530(17)30240-2. DOI
Gauslaa Y., Mikulec M.M., Solhaug K.A. Short-term growth experiments–A tool for quantifying lichen fitness across different mineral settings. Flora-Morphol. Distrib. Funct. Ecol. Plants. 2021;282:151900. doi: 10.1016/j.flora.2021.151900. DOI
Palmqvist K. Tansley review No. 117 carbon economy in lichens. New Phytol. 2000;148:11–36. doi: 10.1046/j.1469-8137.2000.00732.x. PubMed DOI
Palmqvist K., Campbell D., Ekblad A., Johansson H. Photosynthetic capacity in relation to nitrogen content and its partitioning in lichens with different photobionts. Plant Cell Environ. 1998;21:361–372. doi: 10.1046/j.1365-3040.1998.00279.x. DOI
Palmqvist K., Dahlman L., Valladares F., Tehler A., Sancho L., Mattsson J.-E. CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia. 2002;133:295–306. doi: 10.1007/s00442-002-1019-0. PubMed DOI
Beck A., Mayr C. Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont—Photobiont interactions. Ecol. Evol. 2012;2:3132–3144. doi: 10.1002/ece3.417. PubMed DOI PMC
Skrzypek G., Wojtuń B., Richter D., Jakubas D., Wojczulanis-Jakubas K., Samecka-Cymerman A. Diversification of nitrogen sources in various tundra vegetation types in the high arctic. PLoS ONE. 2015;10:e0136536. doi: 10.1371/journal.pone.0136536. PubMed DOI PMC
Casanova-Katny A., Pizarro M., Caballero M.M., Cordero R., Zúiga G.E. Non-structural carbohydrate content in cryptogamic Antarctic species after two years of passive warming on the Fildes Peninsula. Czech Polar Rep. 2015;5:88–98. doi: 10.5817/CPR2015-1-9. DOI
Casanova-Katny A., Torres-Mellado G.A., Eppley S.M. Reproductive output of mosses under experimental warming on Fildes Peninsula, King George Island, maritime Antarctica. Rev. Chil. Hist. Nat. 2016;89:42. doi: 10.1186/s40693-016-0061-y. DOI
Bokhorst S., Huiskes A., Convey P., Sinclair B.J., Lebouvier M., Van de Vijver B., Wall D.H. Microclimate impacts of passive warming methods in Antarctica: Implications for climate change studies. Polar Biol. 2011;34:1421–1435. doi: 10.1007/s00300-011-0997-y. DOI
Gerrish L., Fretwell P., Cooper P. UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation; [(accessed on 15 April 2020)]. High Resolution Vector Polygons of the Antarctic coastline (7.3) [Data Set] Available online: https://www.bas.ac.uk/data/uk-pdc/
Maxwell K., Johnson G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000;51:659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI
Davinson A., Hinkley D. Bootstrap Methods and their Application (Cambridge Series in Statistical and Probabilistic Mathematics) Cambridge University Press; Cambridge, UK: 1997.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2013. [(accessed on 1 January 2019)]. Available online: https://www.R-project.org/
Mangiafico S. Rcompanion: Functions to Support Extension Education Program Evaluation. 2021. [(accessed on 1 January 2021)]. R Package Version 2.4.6. Available online: https://CRAN.R_project.org/package=rcompanion.
Wickham H. Springer; New York, NY, USA: 2016. [(accessed on 1 January 2019)]. ggplot2: Elegant Graphics for Data Analysis. Available online: https://ggplot2.tidyverse.org.