The significance of the fusion partner gene genomic neighborhood analysis in translocation-defined tumors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35621010
PubMed Central
PMC9356546
DOI
10.1002/mgg3.1994
Knihovny.cz E-zdroje
- Klíčová slova
- artificial intelligence, cancer, chromosomal instability, chromothripsis, copy number heterogeneity, gene, gene rearrangement, homologous recombination repair, microsatellite instability, translocation, tumor mutation burden, tumor suppressor gene,
- MeSH
- fúze genů MeSH
- genomika MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery genetika MeSH
- nádory * genetika patologie MeSH
- translokace genetická MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nádorové biomarkery MeSH
INTRODUCTION: This study presents a novel molecular parameter potentially co-defining tumor biology-the total tumor suppressor gene (TSG) count at chromosomal loci harboring genes rearranged in fusion-defined tumors. It belongs to the family of molecular parameters created using a black-box approach. METHOD: It is based on a public curated Texas TSG database. Its data are regrouped based on individual genes loci using another public database (Genecards). The total TSG count for NTRK (NTRK1; OMIM: 191315; NTRK2; OMIM: 600456; NTRK3; OMIM: 191316), NRG1 (OMIM: 142445), and RET (OMIM: 164761) rearranged tumors in patients treated with a theranostic approach is calculated using the results of recently published studies. RESULTS: Altogether 138 loci containing at least three TSGs are identified. These include 21 "extremely hot" spots, with 10 to 28 TSGs mapping to a given locus. However, the study falls short of finding a correlation between tumor regression or patient survival and the TSG count owing to a low number of cases meeting the study criteria. CONCLUSION: The total TSG count alone cannot predict the biology of translocation-defined tumors. The addition of other parameters, including microsatellite instability (MSI), tumor mutation burden (TMB), homologous recombination repair deficiency (HRD), and copy number heterogeneity (CNH), might be helpful. Thus a multi-modal data integration is advocated. We believe that large scale studies should evaluate the significance and value of the total TSG count.
Department of Pathology Medical Faculty in Pilsen Charles University Prague Czech Republic
Molecular Genetics Department Bioptická Laboratoř s r o Pilsen Czech Republic
Zobrazit více v PubMed
Chiang, S. (2021). Recent advances in smooth muscle tumors with PGR and PLAG1 gene fusions and myofibroblastic uterine neoplasms. Genes, Chromosomes & Cancer, 60(3), 138–146. PubMed
Collins, K. , Ramalingam, P. , Euscher, E. D. , Reques Llanos, A. , García, A. , & Malpica, A. (2022). Uterine inflammatory myofibroblastic neoplasms with aggressive behavior, including an epithelioid inflammatory myofibroblastic sarcoma: A clinicopathologic study of 9 cases. The American Journal of Surgical Pathology, 46(1), 105–117. PubMed
Croce, S. , Hostein, I. , & McCluggage, W. G. (2021). NTRK and other recently described kinase fusion positive uterine sarcomas: A review of a group of rare neoplasms. Genes, Chromosomes & Cancer, 60, 147–159. PubMed
Davoli, T. , Xu, A. W. , Mengwasser, K. E. , Sack, L. M. , Yoon, J. C. , Park, P. J. , & Elledge, S. J. (2013). Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell, 155, 948–962. PubMed PMC
Dermawan, J. K. , Zou, Y. , & Antonescu, C. R. (2021). Neuregulin 1 (NRG1) fusion‐positive high‐grade spindle cell sarcoma: A distinct group of soft tissue tumors with metastatic potential. Genes, Chromosomes & Cancer, 61, 123–130. 10.1002/gcc.23008 PubMed DOI PMC
Drilon, A. , Duruisseaux, M. , Han, J. Y. , Ito, M. , Falcon, C. , Yang, S. R. , Murciano‐Goroff, Y. R. , Chen, H. , Okada, M. , Molina, M. A. , Wislez, M. , Brun, P. , Dupont, C. , Branden, E. , Rossi, G. , Schrock, A. , Ali, S. , Gounant, V. , Magne, F. , … Cadranel, J. (2021). Clinicopathologic features and response to therapy of NRG1 fusion‐driven lung cancers: The eNRGy1 global multicenter registry. Journal of Clinical Oncology, 39(25), 2791–2802. PubMed PMC
Drilon, A. , Laetsch, T. W. , Kummar, S. , DuBois, S. G. , Lassen, U. N. , Demetri, G. D. , Nathenson, M. , Doebele, R. C. , Farago, A. F. , Pappo, A. S. , Turpin, B. , Dowlati, A. , Brose, M. S. , Mascarenhas, L. , Federman, N. , Berlin, J. , el‐Deiry, W. S. , Baik, C. , Deeken, J. , … Hyman, D. M. (2018). Efficacy of larotrectinib in TRK fusion‐positive cancers in adults and children. The New England Journal of Medicine, 378(8), 731–739. PubMed PMC
Drilon, A. , Oxnard, G. R. , Tan, D. S. , Loong, H. H. , Johnson, M. , Gainor, J. , McCoach, C. E. , Gautschi, O. , Besse, B. , Cho, B. C. , & Peled, N. (2020). Efficacy of Selpercatinib in RET fusion‐positive non‐small‐cell lung cancer. The New England Journal of Medicine, 383(9), 813–824. PubMed PMC
Gatalica, Z. , Xiu, J. , Swensen, J. , & Vranic, S. (2019). Molecular characterization of cancers with NTRK gene fusions. Modern Pathology, 32(1), 147–153. PubMed
Gonzalez, D. , & Stenzinger, A. (2021). Homologous recombination repair deficiency (HRD): From biology to clinical exploitation. Genes, Chromosomes & Cancer, 60(5), 299–302. PubMed
Hanahan, D. , & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. PubMed
Horak, P. , Leichsenring, J. , Goldschmid, H. , Kreutzfeldt, S. , Kazdal, D. , Teleanu, V. , Endris, V. , Gieldon, L. , Allgäuer, M. , Volckmar, A. L. , & Dikow, N. (2022). Assigning evidence to actionability: An introduction to variant interpretation in precision cancer medicine. Genes, Chromosomes & Cancer, 61, 303–313. 10.1002/gcc.22987 PubMed DOI
Jones, M. R. , Williamson, L. M. , Topham, J. T. , Lee, M. K. C. , Goytain, A. , Ho, J. , Denroche, R. E. , Jang, G. , Pleasance, E. , Shen, Y. , Karasinska, J. M. , McGhie, J. , Gill, S. , Lim, H. J. , Moore, M. J. , Wong, H. L. , Ng, T. , Yip, S. , Zhang, W. , … Renouf, D. J. (2019). NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild‐type pancreatic ductal adenocarcinoma. Clinical Cancer Research, 25(15), 4674–4681. PubMed
Jonna, S. , Feldman, R. A. , Swensen, J. , Gatalica, Z. , Korn, W. M. , Borghaei, H. , Ma, P. C. , Nieva, J. J. , Spira, A. I. , Vanderwalde, A. M. , Wozniak, A. J. , Kim, E. S. , & Liu, S. V. (2019). Detection of NRG1 gene fusions in solid tumors. Clinical Cancer Research, 25, 4966–4972. PubMed PMC
Kuroda, N. , Trpkov, K. , Gao, Y. , Tretiakova, M. , Liu, Y. J. , Ulamec, M. , Takeuchi, K. , Agaimy, A. , Przybycin, C. , Magi‐Galluzzi, C. , Fushimi, S. , Kojima, F. , Sibony, M. , Hang, J. F. , Pan, C. C. , Yilmaz, A. , Siadat, F. , Sugawara, E. , Just, P. A. , … Hes, O. (2020). ALK rearranged renal cell carcinoma (ALK‐RCC): A multi‐institutional study of twelve cases with identification of novel partner genes CLIP1, KIF5B and KIAA1217. Modern Pathology, 33(12), 2564–2579. PubMed
Misove, A. , Vicha, A. , Zapotocky, M. , Malis, J. , Balko, J. , Nemeckova, T. , Szabova, J. , Kyncl, M. , Novakova‐Kodetova, D. , Stolova, L. , Jencova, P. , Broz, P. , & Krskova, L. (2021). An unusual fusion gene EML4‐ALK in a patient with congenital mesoblastic nephroma. Genes, Chromosomes & Cancer, 60(12), 837–840. PubMed
Rausch, T. , Jones, D. T. W. , Zapatka, M. , Stütz, A. M. , Zichner, T. , Weischenfeldt, J. , Jäger, N. , Remke, M. , Shih, D. , Northcott, P. A. , Pfaff, E. , Tica, J. , Wang, Q. , Massimi, L. , Witt, H. , Bender, S. , Pleier, S. , Cin, H. , Hawkins, C. , … Korbel, J. O. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148, 59–71. PubMed PMC
Rheinbay, E. (2020). The genomic landscape of advanced cancer. Nature Cancer, 1, 372–373. PubMed
Rosswog, C. , Bartenhagen, C. , Welte, A. , Kahlert, Y. , Hemstedt, N. , Lorenz, W. , Cartolano, M. , Ackermann, S. , Perner, S. , Vogel, W. , Altmüller, J. , Nürnberg, P. , Hertwig, F. , Göhring, G. , Lilienweiss, E. , Stütz, A. M. , Korbel, J. O. , Thomas, R. K. , Peifer, M. , & Fischer, M. (2021). Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nature Genetics, 53, 1673–1685. PubMed
Santarius, T. , Shipley, J. , Brewer, D. , Stratton, M. R. , & Cooper, C. S. (2010). A census of amplified and overexpressed human cancer genes. Nature Reviews Cancer, 10(1), 59–64. PubMed
Sharma, G. G. , Mota, I. , Mologni, L. , Patrucco, E. , Gambacorti‐Passerini, C. , & Chiarle, R. (2018). Tumor resistance against ALK targeted therapy‐where it comes from and where it goes. Cancers (Basel), 10(3), 62. PubMed PMC
Skrabanek, L. , Saini, H. K. , Bader, G. D. , & Enright, A. J. (2008). Computational prediction of protein‐protein interactions. Molecular Biotechnology, 38(1), 1–17. PubMed
Stelzer, G. , Rosen, R. , Plaschkes, I. , et al. (2016). The GeneCards Suite: From gene data mining to disease genome sequence analysis. Current Protocols in Bioinformatics, 54, 1.30.1–1.30.33. Retrieved December 15, 2021, from www.genecards.org (version 5.7) PubMed
Stenzinger, A. , Alber, M. , Allgäuer, M. , Jurmeister, P. , Bockmayr, M. , Budczies, J. , Lennerz, J. , Eschrich, J. , Kazdal, D. , Schirmacher, P. , Wagner, A. H. , Tacke, F. , Capper, D. , Müller, K. R. , & Klauschen, F. (2021). Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling. Seminars in Cancer Biology, in press. 10.1016/j.semcancer.2021.02.011 PubMed DOI
Stephens, P. J. , Greenman, C. D. , Fu, B. , Yang, F. , Bignell, G. R. , Mudie, L. J. , Pleasance, E. D. , Lau, K. W. , Beare, D. , Stebbings, L. A. , McLaren, S. , Lin, M. L. , McBride, D. J. , Varela, I. , Nik‐Zainal, S. , Leroy, C. , Jia, M. , Menzies, A. , Butler, A. P. , … Campbell, P. J. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40. PubMed PMC
van Dijk, E. , van den Bosch, T. , Lenos, K. J. , el Makrini, K. , Nijman, L. E. , van Essen, H. F. B. , Lansu, N. , Boekhout, M. , Hageman, J. H. , Fitzgerald, R. C. , Punt, C. J. A. , Tuynman, J. B. , Snippert, H. J. G. , Kops, G. J. P. L. , Medema, J. P. , Ylstra, B. , Vermeulen, L. , & Miedema, D. M. (2021). Chromosomal copy number heterogeneity predicts survival rates across cancers. Nature Communications, 12, 3188. PubMed PMC
Vogelstein, B. , Papadopoulos, N. , Velculescu, V. E. , Zhou, S. , Diaz, L. A., Jr. , & Kinzler, K. W. (2013). Cancer genome landscapes. Science, 339(6127), 1546–1558. PubMed PMC
Voronina, N. , Wong, J. K. L. , Hübschmann, D. , Hlevnjak, M. , Uhrig, S. , Heilig, C. E. , Horak, P. , Kreutzfeldt, S. , Mock, A. , Stenzinger, A. , Hutter, B. , Fröhlich, M. , Brors, B. , Jahn, A. , Klink, B. , Gieldon, L. , Sieverling, L. , Feuerbach, L. , Chudasama, P. , … Ernst, A. (2020). The landscape of chromothripsis across adult cancer types. Nature Communications, 11, 2320. PubMed PMC
Watkins, T. B. K. , Lim, E. L. , Petkovic, M. , Elizalde, S. , Birkbak, N. J. , Wilson, G. A. , Moore, D. A. , Grönroos, E. , Rowan, A. , Dewhurst, S. M. , Demeulemeester, J. , Dentro, S. C. , Horswell, S. , Au, L. , Haase, K. , Escudero, M. , Rosenthal, R. , Bakir, M. A. , Xu, H. , … Swanton, C. (2020). Pervasive chromosomal instability and karyotype order in tumour evolution. Nature, 587, 126–132. PubMed PMC
Wirth, L. J. , Sherman, E. , Robinson, B. , et al. (2020). Efficacy of Selpercatinib in RET‐altered thyroid cancers. The New England Journal of Medicine, 383(9), 825–835. PubMed PMC
Zhao M., Kim P., Mitra R., Zhao J., Zhao Z.. TSGene 2.0: A literature‐based database of tumor suppressor genes for pan‐cancer analysis. Retrieved November 31, 2021, from https://bioinfo.uth.edu/TSGene/
Zhao, M. , Sun, J. , & Zhao, Z. (2013). TSGene: A web resource for tumor suppressor genes. Nucleic Acids Research, 41(Database issue), D970–D976. PubMed PMC