14-3-3 protein inhibits CaMKK1 by blocking the kinase active site with its last two C-terminal helices
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37817008
PubMed Central
PMC10588359
DOI
10.1002/pro.4805
Knihovny.cz E-zdroje
- Klíčová slova
- 14-3-3 proteins, CaMKK, SAXS, calcium/calmodulin-dependent protein kinase, fluorescence spectroscopy, hydrogen/deuterium exchange coupled to MS, protein-protein interaction,
- MeSH
- difrakce rentgenového záření MeSH
- fosforylace MeSH
- katalytická doména MeSH
- kinasa proteinkinasy závislé na vápníku a kalmodulinu * chemie metabolismus MeSH
- maloúhlový rozptyl MeSH
- proteiny 14-3-3 * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kinasa proteinkinasy závislé na vápníku a kalmodulinu * MeSH
- proteiny 14-3-3 * MeSH
Ca2+ /CaM-dependent protein kinase kinases 1 and 2 (CaMKK1 and CaMKK2) phosphorylate and enhance the catalytic activity of downstream kinases CaMKI, CaMKIV, and protein kinase B. Accordingly, CaMKK1 and CaMKK2 regulate key physiological and pathological processes, such as tumorigenesis, neuronal morphogenesis, synaptic plasticity, transcription factor activation, and cellular energy homeostasis, and promote cell survival. Both CaMKKs are partly inhibited by phosphorylation, which in turn triggers adaptor and scaffolding protein 14-3-3 binding. However, 14-3-3 binding only significantly affects CaMKK1 function. CaMKK2 activity remains almost unchanged after complex formation for reasons still unclear. Here, we aim at structurally characterizing CaMKK1:14-3-3 and CaMKK2:14-3-3 complexes by SAXS, H/D exchange coupled to MS, and fluorescence spectroscopy. The results revealed that complex formation suppresses the interaction of both phosphorylated CaMKKs with Ca2+ /CaM and affects the structure of their kinase domains and autoinhibitory segments. But these effects are much stronger on CaMKK1 than on CaMKK2 because the CaMKK1:14-3-3γ complex has a more compact and rigid structure in which the active site of the kinase domain directly interacts with the last two C-terminal helices of the 14-3-3γ protein, thereby inhibiting CaMKK1. In contrast, the CaMKK2:14-3-3 complex has a looser and more flexible structure, so 14-3-3 binding only negligibly affects the catalytic activity of CaMKK2. Therefore, Ca2+ /CaM binding suppression and the interaction of the kinase active site of CaMKK1 with the last two C-terminal helices of 14-3-3γ protein provide the structural basis for 14-3-3-mediated CaMKK1 inhibition.
Zobrazit více v PubMed
Alblova M, Smidova A, Docekal V, Vesely J, Herman P, Obsilova V, et al. Molecular basis of the 14‐3‐3 protein‐dependent activation of yeast neutral trehalase Nth1. Proc Natl Acad Sci U S A. 2017;114:E9811–E9820. PubMed PMC
Anderson KA, Means RL, Huang QH, Kemp BE, Goldstein EG, Selbert MA, et al. Components of a calmodulin‐dependent protein kinase cascade. Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin‐dependent protein kinase kinase beta. J Biol Chem. 1998;273:31880–31889. PubMed
Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 2008;7:377–388. PubMed
Bernado P, Svergun DI. Structural analysis of intrinsically disordered proteins by small‐angle X‐ray scattering. Mol Biosyst. 2012;8:151–167. PubMed
Bryan RK. Maximum‐entropy analysis of oversampled data problems. Eur Biophys J. 1990;18:165–174.
Clapham DE. Calcium signaling. Cell. 2007;131:1047–1058. PubMed
Davare MA, Saneyoshi T, Guire ES, Nygaard SC, Soderling TR. Inhibition of calcium/calmodulin‐dependent protein kinase kinase by protein 14‐3‐3. J Biol Chem. 2004;279:52191–52199. PubMed
Deredge D, Li J, Johnson KA, Wintrode PL. Hydrogen/deuterium exchange kinetics demonstrate long range allosteric effects of thumb site 2 inhibitors of hepatitis C viral RNA‐dependent RNA polymerase. J Biol Chem. 2016;291:10078–10088. PubMed PMC
Eduful BJ, O'Byrne SN, Temme L, Asquith CRM, Liang Y, Picado A, et al. Hinge binder scaffold hopping identifies potent calcium/calmodulin‐dependent protein kinase kinase 2 (CAMKK2) inhibitor chemotypes. J Med Chem. 2021;64:10849–10877. PubMed PMC
Franke D, Svergun DI. DAMMIF, a program for rapid ab‐initio shape determination in small‐angle scattering. J Appl Cryst. 2009;42:342–346. PubMed PMC
Gocher AM, Azabdaftari G, Euscher LM, Dai S, Karacosta LG, Franke TF, et al. Akt activation by Ca(2+)/calmodulin‐dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. J Biol Chem. 2017;292:14188–14204. PubMed PMC
Gogl G, Tugaeva KV, Eberling P, Kostmann C, Trave G, Sluchanko NN. Hierarchized phosphotarget binding by the seven human 14‐3‐3 isoforms. Nat Commun. 2021;12:1677. PubMed PMC
Green MF, Scott JW, Steel R, Oakhill JS, Kemp BE, Means AR. Ca2+/calmodulin‐dependent protein kinase kinase beta is regulated by multisite phosphorylation. J Biol Chem. 2011;286:28066–28079. PubMed PMC
Holakovska B, Grycova L, Bily J, Teisinger J. Characterization of calmodulin binding domains in TRPV2 and TRPV5 C‐tails. Amino Acids. 2011;40:741–748. PubMed
Horvath M, Petrvalska O, Herman P, Obsilova V, Obsil T. 14‐3‐3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Commun Biol. 2021;4:986. PubMed PMC
Houtman JC, Brown PH, Bowden B, Yamaguchi H, Appella E, Samelson LE, et al. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci. 2007;16:30–42. PubMed PMC
Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. The Ca2+/calmodulin‐dependent protein kinase kinases are AMP‐activated protein kinase kinases. J Biol Chem. 2005;280:29060–29066. PubMed
Ichimura T, Taoka M, Hozumi Y, Goto K, Tokumitsu H. 14‐3‐3 proteins directly regulate Ca(2+)/calmodulin‐dependent protein kinase kinase alpha through phosphorylation‐dependent multisite binding. FEBS Lett. 2008;582:661–665. PubMed
Karlberg T, Hornyak P, Pinto AF, Milanova S, Ebrahimi M, Lindberg M, et al. 14‐3‐3 proteins activate pseudomonas exotoxins‐S and ‐T by chaperoning a hydrophobic surface. Nat Commun. 2018;9:3785. PubMed PMC
Kikhney AG, Svergun DI. A practical guide to small angle X‐ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 2015;589:2570–2577. PubMed
Kincaid RL, Vaughan M, Osborne JC Jr, Tkachuk VA. Ca2+‐dependent interaction of 5‐dimethylaminonaphthalene‐1‐sulfonyl‐calmodulin with cyclic nucleotide phosphodiesterase, calcineurin, and troponin I. J Biol Chem. 1982;257:10638–10643. PubMed
Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: a windows PC‐based system for small‐angle scattering data analysis. J Appl Cryst. 2003;36:1277–1282.
Kozin MB, Svergun DI. Automated matching of high‐ and low‐resolution structural models. J Appl Cryst. 2001;34:33–41.
Langendorf CG, O'Brien MT, Ngoei KRW, McAloon LM, Dhagat U, Hoque A, et al. CaMKK2 is inactivated by cAMP‐PKA signaling and 14‐3‐3 adaptor proteins. J Biol Chem. 2020;295:16239–16250. PubMed PMC
Lawrence MC, Colman PM. Shape complementarity at protein/protein interfaces. J Mol Biol. 1993;234:946–950. PubMed
Lentini Santo D, Petrvalska O, Obsilova V, Ottmann C, Obsil T. Stabilization of protein‐protein interactions between CaMKK2 and 14‐3‐3 by Fusicoccins. ACS Chem Biol. 2020;15:3060–3071. PubMed
Marcelo KL, Means AR, York B. The Ca(2+)/calmodulin/CaMKK2 axis: nature's metabolic CaMshaft. Trends Endocrinol Metab. 2016;27:706–718. PubMed PMC
Massie CE, Lynch A, Ramos‐Montoya A, Boren J, Stark R, Fazli L, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30:2719–2733. PubMed PMC
Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX‐MS) experiments. Nat Methods. 2019;16:595–602. PubMed PMC
Matsushita M, Nairn AC. Inhibition of the Ca2+/calmodulin‐dependent protein kinase I cascade by cAMP‐dependent protein kinase. J Biol Chem. 1999;274:10086–10093. PubMed
Mizuno K, Ris L, Sanchez‐Capelo A, Godaux E, Giese KP. Ca2+/calmodulin kinase kinase alpha is dispensable for brain development but is required for distinct memories in male, though not in female, mice. Mol Cell Biol. 2006;26:9094–9104. PubMed PMC
Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F. Crystal structure of the 14‐3‐3zeta:serotonin N‐acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. PubMed
Obsilova V, Herman P, Vecer J, Sulc M, Teisinger J, Obsil T. 14‐3‐3zeta C‐terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J Biol Chem. 2004;279:4531–4540. PubMed
Obsilova V, Obsil T. Structural insights into the functional roles of 14‐3‐3 proteins. Front Mol Biosci. 2022;9:1016071. PubMed PMC
Panjkovich A, Svergun DI. CHROMIXS: automatic and interactive analysis of chromatography‐coupled small‐angle X‐ray scattering data. Bioinformatics. 2018;34:1944–1946. PubMed PMC
Park E, Rawson S, Li K, Kim BW, Ficarro SB, Pino GG, et al. Architecture of autoinhibited and active BRAF‐MEK1‐14‐3‐3 complexes. Nature. 2019;575:545–550. PubMed PMC
Peters M, Mizuno K, Ris L, Angelo M, Godaux E, Giese KP. Loss of Ca2+/calmodulin kinase kinase beta affects the formation of some, but not all, types of hippocampus‐dependent long‐term memory. J Neurosci. 2003;23:9752–9760. PubMed PMC
Petrvalska O, Kosek D, Kukacka Z, Tosner Z, Man P, Vecer J, et al. Structural insight into the 14‐3‐3 protein‐dependent inhibition of protein kinase ASK1 (apoptosis signal‐regulating kinase 1). J Biol Chem. 2016;291:20753–20765. PubMed PMC
Price DJ, Drewry DH, Schaller LT, Thompson BD, Reid PR, Maloney PR, et al. An orally available, brain‐penetrant CAMKK2 inhibitor reduces food intake in rodent model. Bioorg Med Chem Lett. 2018;28:1958–1963. PubMed
Psenakova K, Petrvalska O, Kylarova S, Lentini Santo D, Kalabova D, Herman P, et al. 14‐3‐3 protein directly interacts with the kinase domain of calcium/calmodulin‐dependent protein kinase kinase (CaMKK2). Biochim Biophy Acta Gen Subj. 2018;1862:1612–1625. PubMed
Rambo RP, Tainer JA. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod‐Debye law. Biopolymers. 2011;95:559–571. PubMed PMC
Rambo RP, Tainer JA. Accurate assessment of mass, models and resolution by small‐angle scattering. Nature. 2013;496:477–481. PubMed PMC
Receveur‐Brechot V, Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci. 2012;13:55–75. PubMed PMC
Schneidman‐Duhovny D, Hammel M, Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010;38:W540–W544. PubMed PMC
Schneidman‐Duhovny D, Hammel M, Tainer JA, Sali A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys J. 2013;105:962–974. PubMed PMC
Schneidman‐Duhovny D, Hammel M, Tainer JA, Sali A. FoXS, FoXSDock and MultiFoXS: single‐state and multi‐state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res. 2016;44:W424–W429. PubMed PMC
Schuck P. Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;78:1606–1619. PubMed PMC
Svergun DI. Determination of the regularization parameter in indirect‐transform methods using perceptual criteria. J Appl Cryst. 1992;25:495–503.
Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999;76:2879–2886. PubMed PMC
Svergun D, Barberato C, Koch MHJ. CRYSOL—a program to evaluate X‐ray solution scattering of biological macromolecules from atomic coordinates. J Appl Cryst. 1995;28:768–773.
Takabatake S, Ohtsuka S, Sugawara T, Hatano N, Kanayama N, Magari M, et al. Regulation of Ca(2+)/calmodulin‐dependent protein kinase kinase beta by cAMP signaling. Biochim Biophys Acta Gen Subj. 2019;1863:672–680. PubMed
Tokumitsu H, Enslen H, Soderling TR. Characterization of a Ca2+/calmodulin‐dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin‐dependent protein kinase kinase. J Biol Chem. 1995;270:19320–19324. PubMed
Tokumitsu H, Iwabu M, Ishikawa Y, Kobayashi R. Differential regulatory mechanism of Ca2+/calmodulin‐dependent protein kinase kinase isoforms. Biochemistry. 2001;40:13925–13932. PubMed
Tokumitsu H, Sakagami H. Molecular mechanisms underlying Ca(2+)/calmodulin‐dependent protein kinase kinase signal transduction. Int J Mol Sci. 2022;23:11025. PubMed PMC
Vecer J, Herman P. Maximum entropy analysis of analytically simulated complex fluorescence decays. J Fluoresc. 2011;21:873–881. PubMed
Volkov VV, Svergun DI. Uniqueness of ab initio shape determination in small‐angle scattering. J Appl Cryst. 2003;36:860–864. PubMed PMC
Wales TE, Engen JR. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev. 2006;25:158–170. PubMed
Wayman GA, Tokumitsu H, Soderling TR. Inhibitory cross‐talk by cAMP kinase on the calmodulin‐dependent protein kinase cascade. J Biol Chem. 1997;272:16073–16076. PubMed
Weinkam P, Pons J, Sali A. Structure‐based model of allostery predicts coupling between distant sites. Proc Natl Acad Sci U S A. 2012;109:4875–4880. PubMed PMC
Yaffe MB. How do 14‐3‐3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 2002;513:53–57. PubMed
Yano S, Tokumitsu H, Soderling TR. Calcium promotes cell survival through CaM‐K kinase activation of the protein‐kinase‐B pathway. Nature. 1998;396:584–587. PubMed
Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins