Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1

. 2014 May 16 ; 289 (20) : 13948-61. [epub] 20140408

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24713696
Odkazy

PubMed 24713696
PubMed Central PMC4022866
DOI 10.1074/jbc.m113.544551
PII: S0021-9258(20)38738-X
Knihovny.cz E-zdroje

Trehalases hydrolyze the non-reducing disaccharide trehalose amassed by cells as a universal protectant and storage carbohydrate. Recently, it has been shown that the activity of neutral trehalase Nth1 from Saccharomyces cerevisiae is mediated by the 14-3-3 protein binding that modulates the structure of both the catalytic domain and the region containing the EF-hand-like motif, whose role in the activation of Nth1 is unclear. In this work, the structure of the Nth1·14-3-3 complex and the importance of the EF-hand-like motif were investigated using site-directed mutagenesis, hydrogen/deuterium exchange coupled to mass spectrometry, chemical cross-linking, and small angle x-ray scattering. The low resolution structural views of Nth1 alone and the Nth1·14-3-3 complex show that the 14-3-3 protein binding induces a significant structural rearrangement of the whole Nth1 molecule. The EF-hand-like motif-containing region forms a separate domain that interacts with both the 14-3-3 protein and the catalytic trehalase domain. The structural integrity of the EF-hand like motif is essential for the 14-3-3 protein-mediated activation of Nth1, and calcium binding, although not required for the activation, facilitates this process by affecting its structure. Our data suggest that the EF-hand like motif-containing domain functions as the intermediary through which the 14-3-3 protein modulates the function of the catalytic domain of Nth1.

Zobrazit více v PubMed

Elbein A. D., Pan Y. T., Pastuszak I., Carroll D. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R PubMed

Nwaka S., Holzer H. (1998) Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog. Nucleic Acid Res. Mol. Biol. 58, 197–237 PubMed

Kopp M., Müller H., Holzer H. (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J. Biol. Chem. 268, 4766–4774 PubMed

Becker A., Schlöder P., Steele J. E., Wegener G. (1996) The regulation of trehalose metabolism in insects. Experientia 52, 433–439 PubMed

Behm C. A. (1997) The role of trehalose in the physiology of nematodes. Int. J. Parasitol. 27, 215–229 PubMed

Oesterreicher T. J., Markesich D. C., Henning S. J. (2001) Cloning, characterization and mapping of the mouse trehalase (Treh) gene. Gene 270, 211–220 PubMed

Alizadeh P., Klionsky D. J. (1996) Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiae. FEBS Lett. 391, 273–278 PubMed

Amaral F. C., Van Dijck P., Nicoli J. R., Thevelein J. M. (1997) Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch. Microbiol. 167, 202–208 PubMed

Nwaka S., Mechler B., Destruelle M., Holzer H. (1995) Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett. 360, 286–290 PubMed

Jules M., Beltran G., François J., Parrou J. L. (2008) New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl. Environ. Microbiol. 74, 605–614 PubMed PMC

Uno I., Matsumoto K., Adachi K., Ishikawa T. (1983) Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J. Biol. Chem. 258, 10867–10872 PubMed

Ortiz C. H., Maia J. C., Tenan M. N., Braz-Padrão G. R., Mattoon J. R., Panek A. D. (1983) Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J. Bacteriol. 153, 644–651 PubMed PMC

Franco A., Soto T., Vicente-Soler J., Paredes V., Madrid M., Gacto M., Cansado J. (2003) A role for calcium in the regulation of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe. Biochem. J. 376, 209–217 PubMed PMC

Panni S., Landgraf C., Volkmer-Engert R., Cesareni G., Castagnoli L. (2008) Role of 14-3-3 proteins in the regulation of neutral trehalase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 8, 53–63 PubMed

Veisova D., Macakova E., Rezabkova L., Sulc M., Vacha P., Sychrova H., Obsil T., Obsilova V. (2012) Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochem. J. 443, 663–670 PubMed

Schepers W., Van Zeebroeck G., Pinkse M., Verhaert P., Thevelein J. M. (2012) In vivo phosphorylation of Ser21 and Ser83 during nutrient-induced activation of the yeast protein kinase A (PKA) target trehalase. J. Biol. Chem. 287, 44130–44142 PubMed PMC

van Heusden G. P., Griffiths D. J., Ford J. C., Chin-A-Woeng T. F., Schrader P. A., Carr A. M., Steensma H. Y. (1995) The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur. J. Biochem. 229, 45–53 PubMed

van Heusden G. P. (2009) 14-3-3 proteins: insights from genome-wide studies in yeast. Genomics 94, 287–293 PubMed

Mackintosh C. (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J. 381, 329–342 PubMed PMC

Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P., Obsil T., Obsilova V. (2013) Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta 1830, 4491–4499 PubMed

Veisova D., Rezabkova L., Stepanek M., Novotna P., Herman P., Vecer J., Obsil T., Obsilova V. (2010) The C-terminal segment of yeast BMH proteins exhibits different structure compared to other 14-3-3 protein isoforms. Biochemistry 49, 3853–3861 PubMed

Goodwin T. W., Morton R. A. (1946) The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem. J. 40, 628–632 PubMed PMC

Niesen F. H., Berglund H., Vedadi M. (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 PubMed

Pisackova J., Prochazkova K., Fabry M., Rezacova P. (2012) Crystallization of the effector-binding domain of repressor DeoR from Bacillus subtilis. Crystal Growth Des. 13, 844–848

Pernambuco M. B., Winderickx J., Crauwels M., Griffioen G., Mager W. H., Thevelein J. M. (1996) Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology 142, 1775–1782 PubMed

Whitmore L., Wallace B. A. (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 PubMed PMC

Schuck P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 PubMed PMC

Dam J., Velikovsky C. A., Mariuzza R. A., Urbanke C., Schuck P. (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys. J. 89, 619–634 PubMed PMC

Rezabkova L., Man P., Novak P., Herman P., Vecer J., Obsilova V., Obsil T. (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J. Biol. Chem. 286, 43527–43536 PubMed PMC

Young M. M., Tang N., Hempel J. C., Oshiro C. M., Taylor E. W., Kuntz I. D., Gibson B. W., Dollinger G. (2000) High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 97, 5802–5806 PubMed PMC

Konarev P. V., Volkov V. V., Petoukhov M. V., Svergun D. I. (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39, 277–286 PubMed PMC

Konarev P. V., Volkov V. V., Sokolova A. V., Koch M. H. J., Svergun D. I. (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282

Svergun D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503

Svergun D. I. (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 PubMed PMC

Volkov V. V., Svergun D. I. (2003) Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 PubMed PMC

Rashidi H. H., Bauer M., Patterson J., Smith D. W. (1999) Sequence motifs determine structure and Ca++-binding by EF-hand proteins. J. Mol. Microbiol. Biotechnol. 1, 175–182 PubMed

Lewit-Bentley A., Réty S. (2000) EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10, 637–643 PubMed

Engen J. R. (2009) Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal. Chem. 81, 7870–7875 PubMed PMC

Iacob R. E., Engen J. R. (2012) Hydrogen exchange mass spectrometry: are we out of the quicksand? J. Am. Soc. Mass Spectrom. 23, 1003–1010 PubMed PMC

Gibson R. P., Gloster T. M., Roberts S., Warren R. A., Storch de Gracia I., García A., Chiara J. L., Davies G. J. (2007) Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Angew Chem. Int. Ed. Engl. 46, 4115–4119 PubMed

Rittinger K., Budman J., Xu J., Volinia S., Cantley L. C., Smerdon S. J., Gamblin S. J., Yaffe M. B. (1999) Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell 4, 153–166 PubMed

Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J., Cantley L. C. (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 PubMed

Obsil T., Ghirlando R., Klein D. C., Ganguly S., Dyda F. (2001) Crystal structure of the 14-3-3ζ:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell 105, 257–267 PubMed

Ottmann C., Marco S., Jaspert N., Marcon C., Schauer N., Weyand M., Vandermeeren C., Duby G., Boutry M., Wittinghofer A., Rigaud J. L., Oecking C. (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining x-ray crystallography and electron cryomicroscopy. Mol. Cell 25, 427–440 PubMed

Yang X., Lee W. H., Sobott F., Papagrigoriou E., Robinson C. V., Grossmann J. G., Sundström M., Doyle D. A., Elkins J. M. (2006) Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. U.S.A. 103, 17237–17242 PubMed PMC

Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M. Y., Pieper U., Sali A. (2007) Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. 50, 2.9.1–2.9.31 PubMed

Wilson M. A., Brunger A. T. (2000) The 1.0 Å crystal structure of Ca2+-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. J. Mol. Biol. 301, 1237–1256 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins

. 2024 Aug 30 ; 73 (S1) : S401-S412. [epub] 20240422

The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways

. 2024 ; 11 () : 1327014. [epub] 20240124

Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex

. 2023 Jul ; 299 (7) : 104855. [epub] 20230522

Structural insights into the functional roles of 14-3-3 proteins

. 2022 ; 9 () : 1016071. [epub] 20220916

Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1

. 2017 Nov 14 ; 114 (46) : E9811-E9820. [epub] 20171030

Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1)

. 2016 Sep 23 ; 291 (39) : 20753-65. [epub] 20160811

Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein

. 2015 Jun 26 ; 290 (26) : 16246-60. [epub] 20150513

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace