Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24713696
PubMed Central
PMC4022866
DOI
10.1074/jbc.m113.544551
PII: S0021-9258(20)38738-X
Knihovny.cz E-zdroje
- Klíčová slova
- 14–3-3, Bmh, Calcium, Enzyme Mechanisms, H/D Exchange, Mass Spectrometry (MS), Neutral Trehalase, Protein Cross-linking, Protein Structure, SAXS,
- MeSH
- aktivace enzymů MeSH
- katalytická doména MeSH
- molekulární modely MeSH
- motivy EF-ruky * MeSH
- proteiny 14-3-3 chemie metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae enzymologie MeSH
- sekvence aminokyselin MeSH
- trehalasa chemie metabolismus MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BMH1 protein, S cerevisiae MeSH Prohlížeč
- proteiny 14-3-3 MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- trehalasa MeSH
- vápník MeSH
Trehalases hydrolyze the non-reducing disaccharide trehalose amassed by cells as a universal protectant and storage carbohydrate. Recently, it has been shown that the activity of neutral trehalase Nth1 from Saccharomyces cerevisiae is mediated by the 14-3-3 protein binding that modulates the structure of both the catalytic domain and the region containing the EF-hand-like motif, whose role in the activation of Nth1 is unclear. In this work, the structure of the Nth1·14-3-3 complex and the importance of the EF-hand-like motif were investigated using site-directed mutagenesis, hydrogen/deuterium exchange coupled to mass spectrometry, chemical cross-linking, and small angle x-ray scattering. The low resolution structural views of Nth1 alone and the Nth1·14-3-3 complex show that the 14-3-3 protein binding induces a significant structural rearrangement of the whole Nth1 molecule. The EF-hand-like motif-containing region forms a separate domain that interacts with both the 14-3-3 protein and the catalytic trehalase domain. The structural integrity of the EF-hand like motif is essential for the 14-3-3 protein-mediated activation of Nth1, and calcium binding, although not required for the activation, facilitates this process by affecting its structure. Our data suggest that the EF-hand like motif-containing domain functions as the intermediary through which the 14-3-3 protein modulates the function of the catalytic domain of Nth1.
From the Institute of Physiology and
From the Institute of Physiology and the Departments of Physical and Macromolecular Chemistry and
Zobrazit více v PubMed
Elbein A. D., Pan Y. T., Pastuszak I., Carroll D. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R PubMed
Nwaka S., Holzer H. (1998) Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog. Nucleic Acid Res. Mol. Biol. 58, 197–237 PubMed
Kopp M., Müller H., Holzer H. (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J. Biol. Chem. 268, 4766–4774 PubMed
Becker A., Schlöder P., Steele J. E., Wegener G. (1996) The regulation of trehalose metabolism in insects. Experientia 52, 433–439 PubMed
Behm C. A. (1997) The role of trehalose in the physiology of nematodes. Int. J. Parasitol. 27, 215–229 PubMed
Oesterreicher T. J., Markesich D. C., Henning S. J. (2001) Cloning, characterization and mapping of the mouse trehalase (Treh) gene. Gene 270, 211–220 PubMed
Alizadeh P., Klionsky D. J. (1996) Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiae. FEBS Lett. 391, 273–278 PubMed
Amaral F. C., Van Dijck P., Nicoli J. R., Thevelein J. M. (1997) Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch. Microbiol. 167, 202–208 PubMed
Nwaka S., Mechler B., Destruelle M., Holzer H. (1995) Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett. 360, 286–290 PubMed
Jules M., Beltran G., François J., Parrou J. L. (2008) New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl. Environ. Microbiol. 74, 605–614 PubMed PMC
Uno I., Matsumoto K., Adachi K., Ishikawa T. (1983) Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J. Biol. Chem. 258, 10867–10872 PubMed
Ortiz C. H., Maia J. C., Tenan M. N., Braz-Padrão G. R., Mattoon J. R., Panek A. D. (1983) Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J. Bacteriol. 153, 644–651 PubMed PMC
Franco A., Soto T., Vicente-Soler J., Paredes V., Madrid M., Gacto M., Cansado J. (2003) A role for calcium in the regulation of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe. Biochem. J. 376, 209–217 PubMed PMC
Panni S., Landgraf C., Volkmer-Engert R., Cesareni G., Castagnoli L. (2008) Role of 14-3-3 proteins in the regulation of neutral trehalase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 8, 53–63 PubMed
Veisova D., Macakova E., Rezabkova L., Sulc M., Vacha P., Sychrova H., Obsil T., Obsilova V. (2012) Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochem. J. 443, 663–670 PubMed
Schepers W., Van Zeebroeck G., Pinkse M., Verhaert P., Thevelein J. M. (2012) In vivo phosphorylation of Ser21 and Ser83 during nutrient-induced activation of the yeast protein kinase A (PKA) target trehalase. J. Biol. Chem. 287, 44130–44142 PubMed PMC
van Heusden G. P., Griffiths D. J., Ford J. C., Chin-A-Woeng T. F., Schrader P. A., Carr A. M., Steensma H. Y. (1995) The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur. J. Biochem. 229, 45–53 PubMed
van Heusden G. P. (2009) 14-3-3 proteins: insights from genome-wide studies in yeast. Genomics 94, 287–293 PubMed
Mackintosh C. (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J. 381, 329–342 PubMed PMC
Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P., Obsil T., Obsilova V. (2013) Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta 1830, 4491–4499 PubMed
Veisova D., Rezabkova L., Stepanek M., Novotna P., Herman P., Vecer J., Obsil T., Obsilova V. (2010) The C-terminal segment of yeast BMH proteins exhibits different structure compared to other 14-3-3 protein isoforms. Biochemistry 49, 3853–3861 PubMed
Goodwin T. W., Morton R. A. (1946) The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem. J. 40, 628–632 PubMed PMC
Niesen F. H., Berglund H., Vedadi M. (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 PubMed
Pisackova J., Prochazkova K., Fabry M., Rezacova P. (2012) Crystallization of the effector-binding domain of repressor DeoR from Bacillus subtilis. Crystal Growth Des. 13, 844–848
Pernambuco M. B., Winderickx J., Crauwels M., Griffioen G., Mager W. H., Thevelein J. M. (1996) Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology 142, 1775–1782 PubMed
Whitmore L., Wallace B. A. (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 PubMed PMC
Schuck P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 PubMed PMC
Dam J., Velikovsky C. A., Mariuzza R. A., Urbanke C., Schuck P. (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys. J. 89, 619–634 PubMed PMC
Rezabkova L., Man P., Novak P., Herman P., Vecer J., Obsilova V., Obsil T. (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J. Biol. Chem. 286, 43527–43536 PubMed PMC
Young M. M., Tang N., Hempel J. C., Oshiro C. M., Taylor E. W., Kuntz I. D., Gibson B. W., Dollinger G. (2000) High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 97, 5802–5806 PubMed PMC
Konarev P. V., Volkov V. V., Petoukhov M. V., Svergun D. I. (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39, 277–286 PubMed PMC
Konarev P. V., Volkov V. V., Sokolova A. V., Koch M. H. J., Svergun D. I. (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282
Svergun D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503
Svergun D. I. (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 PubMed PMC
Volkov V. V., Svergun D. I. (2003) Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 PubMed PMC
Rashidi H. H., Bauer M., Patterson J., Smith D. W. (1999) Sequence motifs determine structure and Ca++-binding by EF-hand proteins. J. Mol. Microbiol. Biotechnol. 1, 175–182 PubMed
Lewit-Bentley A., Réty S. (2000) EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10, 637–643 PubMed
Engen J. R. (2009) Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal. Chem. 81, 7870–7875 PubMed PMC
Iacob R. E., Engen J. R. (2012) Hydrogen exchange mass spectrometry: are we out of the quicksand? J. Am. Soc. Mass Spectrom. 23, 1003–1010 PubMed PMC
Gibson R. P., Gloster T. M., Roberts S., Warren R. A., Storch de Gracia I., García A., Chiara J. L., Davies G. J. (2007) Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Angew Chem. Int. Ed. Engl. 46, 4115–4119 PubMed
Rittinger K., Budman J., Xu J., Volinia S., Cantley L. C., Smerdon S. J., Gamblin S. J., Yaffe M. B. (1999) Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell 4, 153–166 PubMed
Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J., Cantley L. C. (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 PubMed
Obsil T., Ghirlando R., Klein D. C., Ganguly S., Dyda F. (2001) Crystal structure of the 14-3-3ζ:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell 105, 257–267 PubMed
Ottmann C., Marco S., Jaspert N., Marcon C., Schauer N., Weyand M., Vandermeeren C., Duby G., Boutry M., Wittinghofer A., Rigaud J. L., Oecking C. (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining x-ray crystallography and electron cryomicroscopy. Mol. Cell 25, 427–440 PubMed
Yang X., Lee W. H., Sobott F., Papagrigoriou E., Robinson C. V., Grossmann J. G., Sundström M., Doyle D. A., Elkins J. M. (2006) Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. U.S.A. 103, 17237–17242 PubMed PMC
Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M. Y., Pieper U., Sali A. (2007) Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. 50, 2.9.1–2.9.31 PubMed
Wilson M. A., Brunger A. T. (2000) The 1.0 Å crystal structure of Ca2+-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. J. Mol. Biol. 301, 1237–1256 PubMed
Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins
The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways
Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex
Structural insights into the functional roles of 14-3-3 proteins
Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1
Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein