Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein

. 2015 Jun 26 ; 290 (26) : 16246-60. [epub] 20150513

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25971962
Odkazy

PubMed 25971962
PubMed Central PMC4481224
DOI 10.1074/jbc.m115.636563
PII: S0021-9258(20)58452-4
Knihovny.cz E-zdroje

Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function.

Zobrazit více v PubMed

Lee R. H., Lieberman B. S., Lolley R. N. (1987) A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with β- and γ-transducin: purification and subunit structure. Biochemistry 26, 3983–3990 PubMed

Bauer P. H., Müller S., Puzicha M., Pippig S., Obermaier B., Helmreich E. J., Lohse M. J. (1992) Phosducin is a protein kinase A-regulated G-protein regulator. Nature 358, 73–76 PubMed

Zhu X., Craft C. M. (2000) Modulation of CRX transactivation activity by phosducin isoforms. Mol. Cell. Biol. 20, 5216–5226 PubMed PMC

Herrmann R., Lobanova E. S., Hammond T., Kessler C., Burns M. E., Frishman L. J., Arshavsky V. Y. (2010) Phosducin regulates transmission at the photoreceptor-to-ON-bipolar cell synapse. J. Neurosci. 30, 3239–3253 PubMed PMC

Beetz N., Harrison M. D., Brede M., Zong X., Urbanski M. J., Sietmann A., Kaufling J., Lorkowski S., Barrot M., Seeliger M. W., Vieira-Coelho M. A., Hamet P., Gaudet D., Seda O., Tremblay J., et al. (2009) Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. J. Clin. Invest. 119, 3597–3612 PubMed PMC

Willardson B. M., Howlett A. C. (2007) Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell. Signal. 19, 2417–2427 PubMed PMC

Lee R. H., Lieberman B. S., Yamane H. K., Bok D., Fung B. K. (1992) A third form of the G protein β subunit. 1. Immunochemical identification and localization to cone photoreceptors. J. Biol. Chem. 267, 24776–24781 PubMed

Yoshida T., Willardson B. M., Wilkins J. F., Jensen G. J., Thornton B. D., Bitensky M. W. (1994) The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. J. Biol. Chem. 269, 24050–24057 PubMed

Thulin C. D., Savage J. R., McLaughlin J. N., Truscott S. M., Old W. M., Ahn N. G., Resing K. A., Hamm H. E., Bitensky M. W., Willardson B. M. (2001) Modulation of the G protein regulator phosducin by Ca2+/calmodulin-dependent protein kinase II phosphorylation and 14-3-3 protein binding. J. Biol. Chem. 276, 23805–23815 PubMed

Nakano K., Chen J., Tarr G. E., Yoshida T., Flynn J. M., Bitensky M. W. (2001) Rethinking the role of phosducin: light-regulated binding of phosducin to 14-3-3 in rod inner segments. Proc. Natl. Acad. Sci. U.S.A. 98, 4693–4698 PubMed PMC

Lee B. Y., Thulin C. D., Willardson B. M. (2004) Site-specific phosphorylation of phosducin in intact retina. Dynamics of phosphorylation and effects on G protein βγ dimer binding. J. Biol. Chem. 279, 54008–54017 PubMed

Obsil T., Obsilova V. (2011) Structural basis of 14-3-3 protein functions. Semin. Cell Dev. Biol. 22, 663–672 PubMed

Gaudet R., Bohm A., Sigler P. B. (1996) Crystal structure at 2.4 angstroms resolution of the complex of transducin βγ and its regulator, phosducin. Cell 87, 577–588 PubMed

Gaudet R., Savage J. R., McLaughlin J. N., Willardson B. M., Sigler P. B. (1999) A molecular mechanism for the phosphorylation-dependent regulation of heterotrimeric G proteins by phosducin. Mol. Cell 3, 649–660 PubMed

Rezabkova L., Kacirova M., Sulc M., Herman P., Vecer J., Stepanek M., Obsilova V., Obsil T. (2012) Structural modulation of phosducin by phosphorylation and 14-3-3 protein binding. Biophys. J. 103, 1960–1969 PubMed PMC

Zhu X., Craft C. M. (1998) Interaction of phosducin and phosducin isoforms with a 26S proteasomal subunit, SUG1. Mol. Vis. 4, 13. PubMed

Obsilova V., Herman P., Vecer J., Sulc M., Teisinger J., Obsil T. (2004) 14-3-3ζ C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem. 279, 4531–4540 PubMed

Obsilova V., Nedbalkova E., Silhan J., Boura E., Herman P., Vecer J., Sulc M., Teisinger J., Dyda F., Obsil T. (2008) The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase. Biochemistry 47, 1768–1777 PubMed

Kosek D., Kylarova S., Psenakova K., Rezabkova L., Herman P., Vecer J., Obsilova V., Obsil T. (2014) Biophysical and structural characterization of the thioredoxin-binding domain of protein kinase ASK1 and its interaction with reduced thioredoxin. J. Biol. Chem. 289, 24463–24474 PubMed PMC

Schuck P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 PubMed PMC

Dam J., Velikovsky C. A., Mariuzza R. A., Urbanke C., Schuck P. (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys. J. 89, 619–634 PubMed PMC

Roessle M. W., Klaering R., Ristau U., Robrahn B., Jahn D., Gehrmann T., Konarev P., Round A., Fiedler S., Hermes C., Svergun D. (2007) Upgrade of the small-angle X-ray scattering beamline X33 at the European Molecular Biology Laboratory, Hamburg. J. Appl. Crystallogr. 40, S190–S194

Guinier A. (1939) La diffraction des rayons X aux très faibles angles: Applications à l'etude des phénomènes ultra-microscopies. Ann. Phys. 12, 161–237

Svergun D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503

Svergun D. I. (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 PubMed PMC

Volkov V. V., Svergun D. I. (2003) Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 PubMed PMC

Bernadó P., Mylonas E., Petoukhov M. V., Blackledge M., Svergun D. I. (2007) Structural characterization of flexible proteins using small-angle x-ray scattering. J. Am. Chem. Soc. 129, 5656–5664 PubMed

Vecer J., Vesela P., Malinsky J., Herman P. (2014) Sphingolipid levels crucially modulate lateral microdomain organization of plasma membrane in living yeast. FEBS Lett. 588, 443–449 PubMed

Vecer J., Herman P. (2011) Maximum entropy analysis of analytically simulated complex fluorescence decays. J. Fluoresc. 21, 873–881 PubMed

Cross A. J., Fleming G. R. (1984) Analysis of time-resolved fluorescence anisotropy decays. Biophys. J. 46, 45–56 PubMed PMC

Gilbert C. W. (1983) in Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology (Cundall R. B., Dale R. E., eds) pp. 605–606, Plenum Press, New York

Eftink M. R., Ghiron C. A. (1976) Exposure of tryptophanyl residues in proteins–quantitative-determination by fluorescence quenching studies. Biochemistry 15, 672–680 PubMed

Lakowicz J. R. (1999) Principles of Fluorescence Spectroscopy, 2nd Ed., pp. 53–55, Kluwer Academic/Plenum Publishers, New York

Trcka F., Durech M., Man P., Hernychova L., Muller P., Vojtesek B. (2014) The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J. Biol. Chem. 289, 9887–9901 PubMed PMC

Loew A., Ho Y. K., Blundell T., Bax B. (1998) Phosducin induces a structural change in transducin βγ. Structure 6, 1007–1019 PubMed

Obradovic Z., Peng K., Vucetic S., Radivojac P., Brown C. J., Dunker A. K. (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53, 566–572 PubMed

Ward J. J., Sodhi J. S., McGuffin L. J., Buxton B. F., Jones D. T. (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645 PubMed

Dosztányi Z., Csizmok V., Tompa P., Simon I. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 PubMed

Xue B., Dunbrack R. L., Williams R. W., Dunker A. K., Uversky V. N. (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta 1804, 996–1010 PubMed PMC

Uversky V. N. (2002) What does it mean to be natively unfolded? Eur. J. Biochem. 269, 2–12 PubMed

Footer M. J., Lyo J. K., Theriot J. A. (2008) Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization. J. Biol. Chem. 283, 23852–23862 PubMed PMC

Murray C. L., Marcotrigiano J., Rice C. M. (2008) Bovine viral diarrhea virus core is an intrinsically disordered protein that binds RNA. J. Virol. 82, 1294–1304 PubMed PMC

Hotta K., Ranganathan S., Liu R., Wu F., Machiyama H., Gao R., Hirata H., Soni N., Ohe T., Hogue C. W., Madhusudhan M. S., Sawada Y. (2014) Biophysical properties of intrinsically disordered p130Cas substrate domain–implication in mechanosensing. PLoS Comput. Biol. 10, e1003532. PubMed PMC

Woody R. W. (2010) in Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation (Uversky V. N., Longhi S., eds) pp. 303–321, John Wiley & Sons, Hoboken, NJ

Uversky V. N., Winter S., Löber G. (1996) Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys. Chem. 60, 79–88 PubMed

Bernadó P., Svergun D. I. (2012) Structural analysis of intrinsically disordered proteins by small-angle x-ray scattering. Mol. Biosyst. 8, 151–167 PubMed

Kopecka M., Kosek D., Kukacka Z., Rezabkova L., Man P., Novak P., Obsil T., Obsilova V. (2014) Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. J. Biol. Chem. 289, 13948–13961 PubMed PMC

Putnam C. D., Hammel M., Hura G. L., Tainer J. A. (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 PubMed

Mertens H. D., Svergun D. I. (2010) Structural characterization of proteins and complexes using small-angle x-ray solution scattering. J. Struct. Biol. 172, 128–141 PubMed

Bernadó P. (2010) Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. Eur. Biophys. J. 39, 769–780 PubMed

Silhan J., Obsilova V., Vecer J., Herman P., Sulc M., Teisinger J., Obsil T. (2004) 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem. 279, 49113–49119 PubMed

Bajzer Z., Prendergast F. G. (1993) A model for multiexponential tryptophan fluorescence intensity decay in proteins. Biophys. J. 65, 2313–2323 PubMed PMC

Chen Y., Barkley M. D. (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37, 9976–9982 PubMed

Truong A. B., Masters S. C., Yang H., Fu H. (2002) Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins 49, 321–325 PubMed

Ottmann C., Marco S., Jaspert N., Marcon C., Schauer N., Weyand M., Vandermeeren C., Duby G., Boutry M., Wittinghofer A., Rigaud J. L., Oecking C. (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining x-ray crystallography and electron cryomicroscopy. Mol. Cell 25, 427–440 PubMed

Rezabkova L., Man P., Novak P., Herman P., Vecer J., Obsilova V., Obsil T. (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J. Biol. Chem. 286, 43527–43536 PubMed PMC

Engen J. R. (2003) Analysis of protein complexes with hydrogen exchange and mass spectrometry. Analyst 128, 623–628 PubMed

Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P., Obsil T., Obsilova V. (2013) Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta 1830, 4491–4499 PubMed

Bustos D. M. (2012) The role of protein disorder in the 14-3-3 interaction network. Mol. Biosyst. 8, 178–184 PubMed

Collins M. O., Yu L., Campuzano I., Grant S. G., Choudhary J. S. (2008) Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder. Mol. Cell. Proteomics 7, 1331–1348 PubMed

Obsil T., Ghirlando R., Klein D. C., Ganguly S., Dyda F. (2001) Crystal structure of the 14-3-3ζ:serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell 105, 257–267 PubMed

Veisova D., Macakova E., Rezabkova L., Sulc M., Vacha P., Sychrova H., Obsil T., Obsilova V. (2012) Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochem. J. 443, 663–670 PubMed

Obsil T., Ghirlando R., Anderson D. E., Hickman A. B., Dyda F. (2003) Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 42, 15264–15272 PubMed

Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J., Cantley L. C. (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 PubMed

Eftink M. R., Ghiron C. A. (1976) Fluorescence quenching of indole and model micelle systems. J. Phys. Chem. 80, 486–493

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural insights into the functional roles of 14-3-3 proteins

. 2022 ; 9 () : 1016071. [epub] 20220916

Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains

. 2022 Apr 05 ; 121 (7) : 1299-1311. [epub] 20220218

The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors

. 2020 Jul 03 ; 295 (27) : 8928-8944. [epub] 20200505

MS-Based Approaches Enable the Structural Characterization of Transcription Factor/DNA Response Element Complex

. 2019 Sep 26 ; 9 (10) : . [epub] 20190926

Modulators of 14-3-3 Protein-Protein Interactions

. 2018 May 10 ; 61 (9) : 3755-3778. [epub] 20171019

Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function

. 2017 Apr 11 ; 112 (7) : 1339-1349.

Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1)

. 2016 Sep 23 ; 291 (39) : 20753-65. [epub] 20160811

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace