Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25971962
PubMed Central
PMC4481224
DOI
10.1074/jbc.m115.636563
PII: S0021-9258(20)58452-4
Knihovny.cz E-zdroje
- Klíčová slova
- 14-3-3 protein, fluorescence, hydrogen-deuterium exchange, phosducin, protein complex, protein phosphorylation, small-angle x-ray scattering (SAXS),
- MeSH
- fosfoproteiny chemie genetika metabolismus MeSH
- fosforylace MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- molekulární modely MeSH
- oční proteiny chemie genetika metabolismus MeSH
- proteiny 14-3-3 chemie genetika metabolismus MeSH
- proteiny vázající GTP - regulátory chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfoproteiny MeSH
- oční proteiny MeSH
- phosducin MeSH Prohlížeč
- proteiny 14-3-3 MeSH
- proteiny vázající GTP - regulátory MeSH
- YWHAZ protein, human MeSH Prohlížeč
Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function.
Zobrazit více v PubMed
Lee R. H., Lieberman B. S., Lolley R. N. (1987) A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with β- and γ-transducin: purification and subunit structure. Biochemistry 26, 3983–3990 PubMed
Bauer P. H., Müller S., Puzicha M., Pippig S., Obermaier B., Helmreich E. J., Lohse M. J. (1992) Phosducin is a protein kinase A-regulated G-protein regulator. Nature 358, 73–76 PubMed
Zhu X., Craft C. M. (2000) Modulation of CRX transactivation activity by phosducin isoforms. Mol. Cell. Biol. 20, 5216–5226 PubMed PMC
Herrmann R., Lobanova E. S., Hammond T., Kessler C., Burns M. E., Frishman L. J., Arshavsky V. Y. (2010) Phosducin regulates transmission at the photoreceptor-to-ON-bipolar cell synapse. J. Neurosci. 30, 3239–3253 PubMed PMC
Beetz N., Harrison M. D., Brede M., Zong X., Urbanski M. J., Sietmann A., Kaufling J., Lorkowski S., Barrot M., Seeliger M. W., Vieira-Coelho M. A., Hamet P., Gaudet D., Seda O., Tremblay J., et al. (2009) Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. J. Clin. Invest. 119, 3597–3612 PubMed PMC
Willardson B. M., Howlett A. C. (2007) Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell. Signal. 19, 2417–2427 PubMed PMC
Lee R. H., Lieberman B. S., Yamane H. K., Bok D., Fung B. K. (1992) A third form of the G protein β subunit. 1. Immunochemical identification and localization to cone photoreceptors. J. Biol. Chem. 267, 24776–24781 PubMed
Yoshida T., Willardson B. M., Wilkins J. F., Jensen G. J., Thornton B. D., Bitensky M. W. (1994) The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. J. Biol. Chem. 269, 24050–24057 PubMed
Thulin C. D., Savage J. R., McLaughlin J. N., Truscott S. M., Old W. M., Ahn N. G., Resing K. A., Hamm H. E., Bitensky M. W., Willardson B. M. (2001) Modulation of the G protein regulator phosducin by Ca2+/calmodulin-dependent protein kinase II phosphorylation and 14-3-3 protein binding. J. Biol. Chem. 276, 23805–23815 PubMed
Nakano K., Chen J., Tarr G. E., Yoshida T., Flynn J. M., Bitensky M. W. (2001) Rethinking the role of phosducin: light-regulated binding of phosducin to 14-3-3 in rod inner segments. Proc. Natl. Acad. Sci. U.S.A. 98, 4693–4698 PubMed PMC
Lee B. Y., Thulin C. D., Willardson B. M. (2004) Site-specific phosphorylation of phosducin in intact retina. Dynamics of phosphorylation and effects on G protein βγ dimer binding. J. Biol. Chem. 279, 54008–54017 PubMed
Obsil T., Obsilova V. (2011) Structural basis of 14-3-3 protein functions. Semin. Cell Dev. Biol. 22, 663–672 PubMed
Gaudet R., Bohm A., Sigler P. B. (1996) Crystal structure at 2.4 angstroms resolution of the complex of transducin βγ and its regulator, phosducin. Cell 87, 577–588 PubMed
Gaudet R., Savage J. R., McLaughlin J. N., Willardson B. M., Sigler P. B. (1999) A molecular mechanism for the phosphorylation-dependent regulation of heterotrimeric G proteins by phosducin. Mol. Cell 3, 649–660 PubMed
Rezabkova L., Kacirova M., Sulc M., Herman P., Vecer J., Stepanek M., Obsilova V., Obsil T. (2012) Structural modulation of phosducin by phosphorylation and 14-3-3 protein binding. Biophys. J. 103, 1960–1969 PubMed PMC
Zhu X., Craft C. M. (1998) Interaction of phosducin and phosducin isoforms with a 26S proteasomal subunit, SUG1. Mol. Vis. 4, 13. PubMed
Obsilova V., Herman P., Vecer J., Sulc M., Teisinger J., Obsil T. (2004) 14-3-3ζ C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem. 279, 4531–4540 PubMed
Obsilova V., Nedbalkova E., Silhan J., Boura E., Herman P., Vecer J., Sulc M., Teisinger J., Dyda F., Obsil T. (2008) The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase. Biochemistry 47, 1768–1777 PubMed
Kosek D., Kylarova S., Psenakova K., Rezabkova L., Herman P., Vecer J., Obsilova V., Obsil T. (2014) Biophysical and structural characterization of the thioredoxin-binding domain of protein kinase ASK1 and its interaction with reduced thioredoxin. J. Biol. Chem. 289, 24463–24474 PubMed PMC
Schuck P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 PubMed PMC
Dam J., Velikovsky C. A., Mariuzza R. A., Urbanke C., Schuck P. (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys. J. 89, 619–634 PubMed PMC
Roessle M. W., Klaering R., Ristau U., Robrahn B., Jahn D., Gehrmann T., Konarev P., Round A., Fiedler S., Hermes C., Svergun D. (2007) Upgrade of the small-angle X-ray scattering beamline X33 at the European Molecular Biology Laboratory, Hamburg. J. Appl. Crystallogr. 40, S190–S194
Guinier A. (1939) La diffraction des rayons X aux très faibles angles: Applications à l'etude des phénomènes ultra-microscopies. Ann. Phys. 12, 161–237
Svergun D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503
Svergun D. I. (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 PubMed PMC
Volkov V. V., Svergun D. I. (2003) Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 PubMed PMC
Bernadó P., Mylonas E., Petoukhov M. V., Blackledge M., Svergun D. I. (2007) Structural characterization of flexible proteins using small-angle x-ray scattering. J. Am. Chem. Soc. 129, 5656–5664 PubMed
Vecer J., Vesela P., Malinsky J., Herman P. (2014) Sphingolipid levels crucially modulate lateral microdomain organization of plasma membrane in living yeast. FEBS Lett. 588, 443–449 PubMed
Vecer J., Herman P. (2011) Maximum entropy analysis of analytically simulated complex fluorescence decays. J. Fluoresc. 21, 873–881 PubMed
Cross A. J., Fleming G. R. (1984) Analysis of time-resolved fluorescence anisotropy decays. Biophys. J. 46, 45–56 PubMed PMC
Gilbert C. W. (1983) in Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology (Cundall R. B., Dale R. E., eds) pp. 605–606, Plenum Press, New York
Eftink M. R., Ghiron C. A. (1976) Exposure of tryptophanyl residues in proteins–quantitative-determination by fluorescence quenching studies. Biochemistry 15, 672–680 PubMed
Lakowicz J. R. (1999) Principles of Fluorescence Spectroscopy, 2nd Ed., pp. 53–55, Kluwer Academic/Plenum Publishers, New York
Trcka F., Durech M., Man P., Hernychova L., Muller P., Vojtesek B. (2014) The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J. Biol. Chem. 289, 9887–9901 PubMed PMC
Loew A., Ho Y. K., Blundell T., Bax B. (1998) Phosducin induces a structural change in transducin βγ. Structure 6, 1007–1019 PubMed
Obradovic Z., Peng K., Vucetic S., Radivojac P., Brown C. J., Dunker A. K. (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53, 566–572 PubMed
Ward J. J., Sodhi J. S., McGuffin L. J., Buxton B. F., Jones D. T. (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645 PubMed
Dosztányi Z., Csizmok V., Tompa P., Simon I. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 PubMed
Xue B., Dunbrack R. L., Williams R. W., Dunker A. K., Uversky V. N. (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta 1804, 996–1010 PubMed PMC
Uversky V. N. (2002) What does it mean to be natively unfolded? Eur. J. Biochem. 269, 2–12 PubMed
Footer M. J., Lyo J. K., Theriot J. A. (2008) Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization. J. Biol. Chem. 283, 23852–23862 PubMed PMC
Murray C. L., Marcotrigiano J., Rice C. M. (2008) Bovine viral diarrhea virus core is an intrinsically disordered protein that binds RNA. J. Virol. 82, 1294–1304 PubMed PMC
Hotta K., Ranganathan S., Liu R., Wu F., Machiyama H., Gao R., Hirata H., Soni N., Ohe T., Hogue C. W., Madhusudhan M. S., Sawada Y. (2014) Biophysical properties of intrinsically disordered p130Cas substrate domain–implication in mechanosensing. PLoS Comput. Biol. 10, e1003532. PubMed PMC
Woody R. W. (2010) in Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation (Uversky V. N., Longhi S., eds) pp. 303–321, John Wiley & Sons, Hoboken, NJ
Uversky V. N., Winter S., Löber G. (1996) Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys. Chem. 60, 79–88 PubMed
Bernadó P., Svergun D. I. (2012) Structural analysis of intrinsically disordered proteins by small-angle x-ray scattering. Mol. Biosyst. 8, 151–167 PubMed
Kopecka M., Kosek D., Kukacka Z., Rezabkova L., Man P., Novak P., Obsil T., Obsilova V. (2014) Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. J. Biol. Chem. 289, 13948–13961 PubMed PMC
Putnam C. D., Hammel M., Hura G. L., Tainer J. A. (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 PubMed
Mertens H. D., Svergun D. I. (2010) Structural characterization of proteins and complexes using small-angle x-ray solution scattering. J. Struct. Biol. 172, 128–141 PubMed
Bernadó P. (2010) Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. Eur. Biophys. J. 39, 769–780 PubMed
Silhan J., Obsilova V., Vecer J., Herman P., Sulc M., Teisinger J., Obsil T. (2004) 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem. 279, 49113–49119 PubMed
Bajzer Z., Prendergast F. G. (1993) A model for multiexponential tryptophan fluorescence intensity decay in proteins. Biophys. J. 65, 2313–2323 PubMed PMC
Chen Y., Barkley M. D. (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37, 9976–9982 PubMed
Truong A. B., Masters S. C., Yang H., Fu H. (2002) Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins 49, 321–325 PubMed
Ottmann C., Marco S., Jaspert N., Marcon C., Schauer N., Weyand M., Vandermeeren C., Duby G., Boutry M., Wittinghofer A., Rigaud J. L., Oecking C. (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining x-ray crystallography and electron cryomicroscopy. Mol. Cell 25, 427–440 PubMed
Rezabkova L., Man P., Novak P., Herman P., Vecer J., Obsilova V., Obsil T. (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J. Biol. Chem. 286, 43527–43536 PubMed PMC
Engen J. R. (2003) Analysis of protein complexes with hydrogen exchange and mass spectrometry. Analyst 128, 623–628 PubMed
Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P., Obsil T., Obsilova V. (2013) Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta 1830, 4491–4499 PubMed
Bustos D. M. (2012) The role of protein disorder in the 14-3-3 interaction network. Mol. Biosyst. 8, 178–184 PubMed
Collins M. O., Yu L., Campuzano I., Grant S. G., Choudhary J. S. (2008) Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder. Mol. Cell. Proteomics 7, 1331–1348 PubMed
Obsil T., Ghirlando R., Klein D. C., Ganguly S., Dyda F. (2001) Crystal structure of the 14-3-3ζ:serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell 105, 257–267 PubMed
Veisova D., Macakova E., Rezabkova L., Sulc M., Vacha P., Sychrova H., Obsil T., Obsilova V. (2012) Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochem. J. 443, 663–670 PubMed
Obsil T., Ghirlando R., Anderson D. E., Hickman A. B., Dyda F. (2003) Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 42, 15264–15272 PubMed
Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J., Cantley L. C. (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 PubMed
Eftink M. R., Ghiron C. A. (1976) Fluorescence quenching of indole and model micelle systems. J. Phys. Chem. 80, 486–493
Structural insights into the functional roles of 14-3-3 proteins
Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains
Modulators of 14-3-3 Protein-Protein Interactions
Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function