MS-Based Approaches Enable the Structural Characterization of Transcription Factor/DNA Response Element Complex

. 2019 Sep 26 ; 9 (10) : . [epub] 20190926

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31561554

Grantová podpora
R01 GM121844 NIGMS NIH HHS - United States

The limited information available on the structure of complexes involving transcription factors and cognate DNA response elements represents a major obstacle in the quest to understand their mechanism of action at the molecular level. We implemented a concerted structural proteomics approach, which combined hydrogen-deuterium exchange (HDX), quantitative protein-protein and protein-nucleic acid cross-linking (XL), and homology analysis, to model the structure of the complex between the full-length DNA binding domain (DBD) of Forkhead box protein O4 (FOXO4) and its DNA binding element (DBE). The results confirmed that FOXO4-DBD assumes the characteristic forkhead topology shared by these types of transcription factors, but its binding mode differs significantly from those of other members of the family. The results showed that the binding interaction stabilized regions that were rather flexible and disordered in the unbound form. Surprisingly, the conformational effects were not limited only to the interface between bound components, but extended also to distal regions that may be essential to recruiting additional factors to the transcription machinery. In addition to providing valuable new insights into the binding mechanism, this project provided an excellent evaluation of the merits of structural proteomics approaches in the investigation of systems that are not directly amenable to traditional high-resolution techniques.

Zobrazit více v PubMed

Lambert S.A., Jolma A., Campitelli L.F., Das P.K., Yin Y., Albu M., Chen X., Taipale J., Hughes T.R., Weirauch M.T. The Human Transcription Factors. Cell. 2018;172:650–665. doi: 10.1016/j.cell.2018.01.029. PubMed DOI

Latchman D.S. Transcription factors: An overview. Int. J. Biochem. Cell Biol. 1997;29:1305–1312. doi: 10.1016/S1357-2725(97)00085-X. PubMed DOI

Latchman D.S. Transcription factors: Bound to activate or repress. Trends Biochem. Sci. 2001;26:211–213. doi: 10.1016/S0968-0004(01)01812-6. PubMed DOI

Babu M.M., Luscombe N.M., Aravind L., Gerstein M., Teichmann S.A. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 2004;14:283–291. doi: 10.1016/j.sbi.2004.05.004. PubMed DOI

Brivanlou A.H., Darnell J.E. Signal transduction and the control of gene expression. Science. 2002;295:813–818. doi: 10.1126/science.1066355. PubMed DOI

Vaquerizas J.M., Kummerfeld S.K., Teichmann S.A., Luscombe N.M. A census of human transcription factors: Function, expression and evolution. Nat. Rev. Genet. 2009;10:252–263. doi: 10.1038/nrg2538. PubMed DOI

Heck A.J.R. Native mass spectrometry: A bridge between interactomics and structural biology. Nat. Methods. 2008;5:927–933. doi: 10.1038/nmeth.1265. PubMed DOI

Brent R., Ptashne M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell. 1985;43:729–736. doi: 10.1016/0092-8674(85)90246-6. PubMed DOI

Hollenberg S.M., Evans R.M. Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell. 1988;55:899–906. doi: 10.1016/0092-8674(88)90145-6. PubMed DOI

Ma J., Ptashne M. A new class of yeast transcriptional activators. Cell. 1987;51:113–119. doi: 10.1016/0092-8674(87)90015-8. PubMed DOI

Rozbeský D., Adámek D., Pospíšilová E., Novák P., Chmelík J. Solution structure of the lymphocyte receptor Nkrp1a reveals a distinct conformation of the long loop region as compared to in the crystal structure. Proteins. 2016;84:1304–1311. doi: 10.1002/prot.25078. PubMed DOI

Rozbesky D., Man P., Kavan D., Chmelik J., Cerny J., Bezouska K., Novak P. Chemical cross-linking and H/D exchange for fast refinement of protein crystal structure. Anal. Chem. 2012;84:867–870. doi: 10.1021/ac202818m. PubMed DOI

Kukacka Z., Rosulek M., Strohalm M., Kavan D., Novak P. Mapping protein structural changes by quantitative cross-linking. Methods. 2015;89:112–120. doi: 10.1016/j.ymeth.2015.05.027. PubMed DOI

Vandermarliere E., Stes E., Gevaert K., Martens L. Resolution of protein structure by mass spectrometry. Mass Spectrom. Rev. 2016;35:653–665. doi: 10.1002/mas.21450. PubMed DOI

Konermann L., Pan J., Liu Y.-H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 2011;40:1224–1234. doi: 10.1039/C0CS00113A. PubMed DOI

Zhang Q., Yu E.T., Kellersberger K.A., Crosland E., Fabris D. Toward building a database of bifunctional probes for the MS3D investigation of nucleic acids structures. J. Am. Soc. Mass Spectrom. 2006;17:1570–1581. doi: 10.1016/j.jasms.2006.06.002. PubMed DOI

Fabris D., Yu E.T. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. J. Mass Spectrom. 2010;45:841–860. doi: 10.1002/jms.1762. PubMed DOI PMC

Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom. Rev. 2006;25:663–682. doi: 10.1002/mas.20082. PubMed DOI

Giladi M., van Dijk L., Refaeli B., Almagor L., Hiller R., Man P., Forest E., Khananshvili D. Dynamic distinctions in the Na+/Ca2+ exchanger adopting the inward- and outward-facing conformational states. J. Biol. Chem. 2017;292:12311–12323. doi: 10.1074/jbc.M117.787168. PubMed DOI PMC

Kadek A., Kavan D., Felice A.K.G., Ludwig R., Halada P., Man P. Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase. FEBS Lett. 2015;589:1194–1199. doi: 10.1016/j.febslet.2015.03.029. PubMed DOI

Engen J.R., Wales T.E., Chen S., Marzluff E.M., Hassell K.M., Weis D.D., Smithgall T.E. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. Int. Rev. Phys. Chem. 2013;32:96–127. doi: 10.1080/0144235X.2012.751175. PubMed DOI PMC

Lennartz F., Bengtsson A., Olsen R.W., Joergensen L., Brown A., Remy L., Man P., Forest E., Barfod L.K., Adams Y., et al. Mapping the Binding Site of a Cross-Reactive Plasmodium falciparum PfEMP1 Monoclonal Antibody Inhibitory of ICAM-1 Binding. J. Immunol. 2015;195:3273–3283. doi: 10.4049/jimmunol.1501404. PubMed DOI PMC

Kacirova M., Kosek D., Kadek A., Man P., Vecer J., Herman P., Obsilova V., Obsil T. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein. J. Biol. Chem. 2015;290:16246–16260. doi: 10.1074/jbc.M115.636563. PubMed DOI PMC

Zhang J., Chalmers M.J., Stayrook K.R., Burris L.L., Wang Y., Busby S.A., Pascal B.D., Garcia-Ordonez R.D., Bruning J.B., Istrate M.A., et al. DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat. Struct. Mol. Biol. 2011;18:556–563. doi: 10.1038/nsmb.2046. PubMed DOI PMC

Graham B.W., Tao Y., Dodge K.L., Thaxton C.T., Olaso D., Young N.L., Marshall A.G., Trakselis M.A. DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase. J. Biol. Chem. 2016;291:12467–12480. doi: 10.1074/jbc.M116.719591. PubMed DOI PMC

Zhu M.M., Chitta R., Gross M.L. PLIMSTEX: A novel mass spectrometric method for the quantification of protein–ligand interactions in solution. Int. J. Mass Spectrom. 2005;240:213–220. doi: 10.1016/j.ijms.2004.09.012. DOI

Sperry J.B., Shi X., Rempel D.L., Nishimura Y., Akashi S., Gross M.L. A mass spectrometric approach to the study of DNA-binding proteins: Interaction of human TRF2 with telomeric DNA. Biochemistry. 2008;47:1797–1807. doi: 10.1021/bi702037p. PubMed DOI

Zheng J., Yong H.Y., Panutdaporn N., Liu C., Tang K., Luo D. High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res. 2015;43:1216–1230. doi: 10.1093/nar/gku1329. PubMed DOI PMC

Morton V.L., Burkitt W., O’Connor G., Stonehouse N.J., Stockley P.G., Ashcroft A.E. RNA-induced conformational changes in a viral coat protein studied by hydrogen/deuterium exchange mass spectrometry. Phys. Chem. Chem. Phys. 2010;12:13468–13475. doi: 10.1039/c0cp00817f. PubMed DOI PMC

Novak P., Kruppa G.H. Intra-molecular cross-linking of acidic residues for protein structure studies. Eur. J. Mass Spectrom. 2008;14:355–365. doi: 10.1255/ejms.963. PubMed DOI

Young M.M., Tang N., Hempel J.C., Oshiro C.M., Taylor E.W., Kuntz I.D., Gibson B.W., Dollinger G. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl. Acad. Sci. USA. 2000;97:5802–5806. doi: 10.1073/pnas.090099097. PubMed DOI PMC

Rozbesky D., Sovova Z., Marcoux J., Man P., Ettrich R., Robinson C.V., Novak P. Structural model of lymphocyte receptor NKR-P1C revealed by mass spectrometry and molecular modeling. Anal. Chem. 2013;85:1597–1604. doi: 10.1021/ac302860m. PubMed DOI

Yu E.T., Zhang Q., Fabris D. Untying the FIV frameshifting pseudoknot structure by MS3D. J. Mol. Biol. 2005;345:69–80. doi: 10.1016/j.jmb.2004.10.014. PubMed DOI

Steen H., Petersen J., Mann M., Jensen O.N. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: Tryptophans 54 and 88 of E. coli SSB cross-link to DNA. Protein Sci. 2001;10:1989–2001. doi: 10.1110/ps.07601. PubMed DOI PMC

Lenz C., Kühn-Hölsken E., Urlaub H. Detection of protein-RNA crosslinks by NanoLC-ESI-MS/MS using precursor ion scanning and multiple reaction monitoring (MRM) experiments. J. Am. Soc. Mass Spectrom. 2007;18:869–881. doi: 10.1016/j.jasms.2007.01.013. PubMed DOI

Sharma K., Hrle A., Kramer K., Sachsenberg T., Staals R.H.J., Randau L., Marchfelder A., van der Oost J., Kohlbacher O., Conti E., et al. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry. Methods. 2015;89:138–148. doi: 10.1016/j.ymeth.2015.06.005. PubMed DOI

Loeber R., Michaelson E., Fang Q., Campbell C., Pegg A.E., Tretyakova N. Cross-Linking of the DNA Repair Protein O 6 -Alkylguanine DNA Alkyltransferase to DNA in the Presence of Antitumor Nitrogen Mustards. Chem. Res. Toxicol. 2008;21:787–795. doi: 10.1021/tx7004508. PubMed DOI PMC

Loeber R., Rajesh M., Fang Q., Pegg A.E., Tretyakova N. Cross-Linking of the Human DNA Repair Protein O 6 -Alkylguanine DNA Alkyltransferase to DNA in the Presence of 1,2,3,4-Diepoxybutane. Chem. Res. Toxicol. 2006;19:645–654. doi: 10.1021/tx0600088. PubMed DOI PMC

Michaelson-Richie E.D., Ming X., Codreanu S.G., Loeber R.L., Liebler D.C., Campbell C., Tretyakova N.Y. Mechlorethamine-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. J. Proteome Res. 2011;10:2785–2796. doi: 10.1021/pr200042u. PubMed DOI PMC

Müller D.R., Schindler P., Towbin H., Wirth U., Voshol H., Hoving S., Steinmetz M.O. Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal. Chem. 2001;73:1927–1934. doi: 10.1021/ac001379a. PubMed DOI

Kang S., Mou L., Lanman J., Velu S., Brouillette W.J., Prevelige P.E. Synthesis of biotin-tagged chemical cross-linkers and their applications for mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:1719–1726. doi: 10.1002/rcm.4066. PubMed DOI PMC

Furuyama T., Nakazawa T., Nakano I., Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 2000;349:629–634. doi: 10.1042/bj3490629. PubMed DOI PMC

Borkhardt A., Repp R., Haas O.A., Leis T., Harbott J., Kreuder J., Hammermann J., Henn T., Lampert F. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23) Oncogene. 1997;14:195–202. doi: 10.1038/sj.onc.1200814. PubMed DOI

Zhang X., Tang N., Hadden T.J., Rishi A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta. 2011;1813:1978–1986. doi: 10.1016/j.bbamcr.2011.03.010. PubMed DOI

Kaestner K.H., Knochel W., Martinez D.E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000;14:142–146. PubMed

Weigelt J., Climent I., Dahlman-Wright K., Wikström M. 1H, 13C and 15N resonance assignments of the DNA binding domain of the human forkhead transcription factor AFX. J. Biomol. NMR. 2000;17:181–182. doi: 10.1023/A:1008358816478. PubMed DOI

Boura E., Silhan J., Herman P., Vecer J., Sulc M., Teisinger J., Obsilova V., Obsil T. Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. J. Biol. Chem. 2007;282:8265–8275. doi: 10.1074/jbc.M605682200. PubMed DOI

Boura E., Rezabkova L., Brynda J., Obsilova V., Obsil T. Structure of the human FOXO4-DBD-DNA complex at 1.9 Å resolution reveals new details of FOXO binding to the DNA. Acta Crystallogr. D Biol. Crystallogr. 2010;66:1351–1357. doi: 10.1107/S0907444910042228. PubMed DOI

Scalabrin M., Dixit S.M., Makshood M.M., Krzemien C.E., Fabris D. Bifunctional cross-linking approaches for mass spectrometry-based investigation of nucleic acids and protein-nucleic acid assemblies. Methods. 2018;144:64–78. doi: 10.1016/j.ymeth.2018.05.001. PubMed DOI PMC

Valis K., Prochazka L., Boura E., Chladova J., Obsil T., Rohlena J., Truksa J., Dong L.F., Ralph S.J., Neuzil J. Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res. 2011;71:946–954. doi: 10.1158/0008-5472.CAN-10-2203. PubMed DOI

Kulakovskiy I.V., Vorontsov I.E., Yevshin I.S., Sharipov R.N., Fedorova A.D., Rumynskiy E.I., Medvedeva Y.A., Magana-Mora A., Bajic V.B., Papatsenko D.A., et al. HOCOMOCO: Towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2018;46:D252–D259. doi: 10.1093/nar/gkx1106. PubMed DOI PMC

Vorontsov I.E., Kulakovskiy I.V., Makeev V.J. Jaccard index based similarity measure to compare transcription factor binding site models. Algorithms Mol. Biol. 2013;8:23. doi: 10.1186/1748-7188-8-23. PubMed DOI PMC

Obsil T., Obsilova V. Structural basis for DNA recognition by FOXO proteins. Biochim. Biophys. Acta. 2011;1813:1946–1953. doi: 10.1016/j.bbamcr.2010.11.025. PubMed DOI

Rozbeský D., Rosůlek M., Kukačka Z., Chmelík J., Man P., Novák P. Impact of Chemical Cross-Linking on Protein Structure and Function. Anal. Chem. 2018;90:1104–1113. doi: 10.1021/acs.analchem.7b02863. PubMed DOI

Kadek A., Kavan D., Marcoux J., Stojko J., Felice A.K.G., Cianférani S., Ludwig R., Halada P., Man P. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Biochim. Biophys. Acta. Gen. Subj. 2017;1861:157–167. doi: 10.1016/j.bbagen.2016.11.016. PubMed DOI

Strohalm M., Kavan D., Novák P., Volný M., Havlícek V. mMass 3: A cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 2010;82:4648–4651. doi: 10.1021/ac100818g. PubMed DOI

Webb B., Sali A. Current Protocols in Bioinformatics. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016. Comparative Protein Structure Modeling Using Modeller; pp. 5–6. PubMed PMC

Dominguez C., Boelens R., Bonvin A.M.J.J. Haddock: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. J. Am. Chem. Soc. 2003;125:1731–1737. doi: 10.1021/ja026939x. PubMed DOI

Wassenaar T.A., van Dijk M., Loureiro-Ferreira N., van der Schot G., de Vries S.J., Schmitz C., van der Zwan J., Boelens R., Giachetti A., Ferella L., et al. WeNMR: Structural Biology on the Grid. J. Grid Comput. 2012;10:743–767. doi: 10.1007/s10723-012-9246-z. DOI

Brünger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.S., Kuszewski J., Nilges M., Pannu N.S., et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 1998;54:905–921. PubMed

Pierce Chemicals . Double Agents Cross-Linking Reagents Selection Guide. Pierce Chemicals; Rockford, IL, USA: 1999.

Dans P.D., Crespo A., Estrin D.A., Coitiño E.L. Structural and Energetic Study of Cisplatin and Derivatives: Comparison of the Performance of Density Funtional Theory Implementations. J. Chem. Theory Comput. 2008;4:740–750. doi: 10.1021/ct7002385. PubMed DOI

Rosen M.S., Spokoyny A.M., Machan C.W., Stern C., Sarjeant A., Mirkin C.A. Chelating Effect as a Driving Force for the Selective Formation of Heteroligated Pt(II) Complexes with Bidentate Phosphino-Chalcoether Ligands. Inorg. Chem. 2011;50:1411–1419. doi: 10.1021/ic101973s. PubMed DOI PMC

DeLano W.L. The PyMOL Molecular Graphics System. Schrodinger Inc; Portland, OR, USA: 2002.

Kavan D., Man P. MSTools—Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302:53–58. doi: 10.1016/j.ijms.2010.07.030. DOI

Kadek A., Mrazek H., Halada P., Rey M., Schriemer D.C., Man P. Aspartic Protease Nepenthesin-1 as a Tool for Digestion in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2014;86:4287–4294. doi: 10.1021/ac404076j. PubMed DOI

Timerbaev A.R., Hartinger C.G., Aleksenko S.S., Keppler B.K. Interactions of antitumor metallodrugs with serum proteins: Advances in characterization using modern analytical methodology. Chem. Rev. 2006;106:2224–2248. doi: 10.1021/cr040704h. PubMed DOI

Deubel D.V. Factors governing the kinetic competition of nitrogen and sulfur ligands in cisplatin binding to biological targets. J. Am. Chem. Soc. 2004;126:5999–6004. doi: 10.1021/ja0499602. PubMed DOI

Nafisi S., Norouzi Z. A comparative study on the interaction of cis- and trans-platin with DNA and RNA. DNA Cell Biol. 2009;28:469–477. doi: 10.1089/dna.2009.0894. PubMed DOI

Buchan D.W.A., Minneci F., Nugent T.C.O., Bryson K., Jones D.T. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2013;41:W349–W357. doi: 10.1093/nar/gkt381. PubMed DOI PMC

Eijkelenboom A., Burgering B.M.T. FOXOs: Signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 2013;14:83–97. doi: 10.1038/nrm3507. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace