MS-Based Approaches Enable the Structural Characterization of Transcription Factor/DNA Response Element Complex
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM121844
NIGMS NIH HHS - United States
PubMed
31561554
PubMed Central
PMC6843354
DOI
10.3390/biom9100535
PII: biom9100535
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, FOXO4, cross-linking, molecular modeling, protein, protein-nucleic acid cross-linking, trans-dichlorodiamineplatinum(II), hydrogen-deuterium exchange, transcription factor, transplatin,
- MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- DNA chemie metabolismus MeSH
- hmotnostní spektrometrie MeSH
- molekulární struktura MeSH
- responzivní elementy MeSH
- transkripční faktory chemie metabolismus MeSH
- vodík-deuteriová výměna MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- transkripční faktory MeSH
The limited information available on the structure of complexes involving transcription factors and cognate DNA response elements represents a major obstacle in the quest to understand their mechanism of action at the molecular level. We implemented a concerted structural proteomics approach, which combined hydrogen-deuterium exchange (HDX), quantitative protein-protein and protein-nucleic acid cross-linking (XL), and homology analysis, to model the structure of the complex between the full-length DNA binding domain (DBD) of Forkhead box protein O4 (FOXO4) and its DNA binding element (DBE). The results confirmed that FOXO4-DBD assumes the characteristic forkhead topology shared by these types of transcription factors, but its binding mode differs significantly from those of other members of the family. The results showed that the binding interaction stabilized regions that were rather flexible and disordered in the unbound form. Surprisingly, the conformational effects were not limited only to the interface between bound components, but extended also to distal regions that may be essential to recruiting additional factors to the transcription machinery. In addition to providing valuable new insights into the binding mechanism, this project provided an excellent evaluation of the merits of structural proteomics approaches in the investigation of systems that are not directly amenable to traditional high-resolution techniques.
Faculty of Science Charles University 12843 Prague Czech Republic
Institute of Microbiology The Czech Academy of Sciences 14220 Prague Czech Republic
RNA Institute University at Albany State University of New York Albany NY 12222 USA
Zobrazit více v PubMed
Lambert S.A., Jolma A., Campitelli L.F., Das P.K., Yin Y., Albu M., Chen X., Taipale J., Hughes T.R., Weirauch M.T. The Human Transcription Factors. Cell. 2018;172:650–665. doi: 10.1016/j.cell.2018.01.029. PubMed DOI
Latchman D.S. Transcription factors: An overview. Int. J. Biochem. Cell Biol. 1997;29:1305–1312. doi: 10.1016/S1357-2725(97)00085-X. PubMed DOI
Latchman D.S. Transcription factors: Bound to activate or repress. Trends Biochem. Sci. 2001;26:211–213. doi: 10.1016/S0968-0004(01)01812-6. PubMed DOI
Babu M.M., Luscombe N.M., Aravind L., Gerstein M., Teichmann S.A. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 2004;14:283–291. doi: 10.1016/j.sbi.2004.05.004. PubMed DOI
Brivanlou A.H., Darnell J.E. Signal transduction and the control of gene expression. Science. 2002;295:813–818. doi: 10.1126/science.1066355. PubMed DOI
Vaquerizas J.M., Kummerfeld S.K., Teichmann S.A., Luscombe N.M. A census of human transcription factors: Function, expression and evolution. Nat. Rev. Genet. 2009;10:252–263. doi: 10.1038/nrg2538. PubMed DOI
Heck A.J.R. Native mass spectrometry: A bridge between interactomics and structural biology. Nat. Methods. 2008;5:927–933. doi: 10.1038/nmeth.1265. PubMed DOI
Brent R., Ptashne M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell. 1985;43:729–736. doi: 10.1016/0092-8674(85)90246-6. PubMed DOI
Hollenberg S.M., Evans R.M. Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell. 1988;55:899–906. doi: 10.1016/0092-8674(88)90145-6. PubMed DOI
Ma J., Ptashne M. A new class of yeast transcriptional activators. Cell. 1987;51:113–119. doi: 10.1016/0092-8674(87)90015-8. PubMed DOI
Rozbeský D., Adámek D., Pospíšilová E., Novák P., Chmelík J. Solution structure of the lymphocyte receptor Nkrp1a reveals a distinct conformation of the long loop region as compared to in the crystal structure. Proteins. 2016;84:1304–1311. doi: 10.1002/prot.25078. PubMed DOI
Rozbesky D., Man P., Kavan D., Chmelik J., Cerny J., Bezouska K., Novak P. Chemical cross-linking and H/D exchange for fast refinement of protein crystal structure. Anal. Chem. 2012;84:867–870. doi: 10.1021/ac202818m. PubMed DOI
Kukacka Z., Rosulek M., Strohalm M., Kavan D., Novak P. Mapping protein structural changes by quantitative cross-linking. Methods. 2015;89:112–120. doi: 10.1016/j.ymeth.2015.05.027. PubMed DOI
Vandermarliere E., Stes E., Gevaert K., Martens L. Resolution of protein structure by mass spectrometry. Mass Spectrom. Rev. 2016;35:653–665. doi: 10.1002/mas.21450. PubMed DOI
Konermann L., Pan J., Liu Y.-H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 2011;40:1224–1234. doi: 10.1039/C0CS00113A. PubMed DOI
Zhang Q., Yu E.T., Kellersberger K.A., Crosland E., Fabris D. Toward building a database of bifunctional probes for the MS3D investigation of nucleic acids structures. J. Am. Soc. Mass Spectrom. 2006;17:1570–1581. doi: 10.1016/j.jasms.2006.06.002. PubMed DOI
Fabris D., Yu E.T. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. J. Mass Spectrom. 2010;45:841–860. doi: 10.1002/jms.1762. PubMed DOI PMC
Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom. Rev. 2006;25:663–682. doi: 10.1002/mas.20082. PubMed DOI
Giladi M., van Dijk L., Refaeli B., Almagor L., Hiller R., Man P., Forest E., Khananshvili D. Dynamic distinctions in the Na+/Ca2+ exchanger adopting the inward- and outward-facing conformational states. J. Biol. Chem. 2017;292:12311–12323. doi: 10.1074/jbc.M117.787168. PubMed DOI PMC
Kadek A., Kavan D., Felice A.K.G., Ludwig R., Halada P., Man P. Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase. FEBS Lett. 2015;589:1194–1199. doi: 10.1016/j.febslet.2015.03.029. PubMed DOI
Engen J.R., Wales T.E., Chen S., Marzluff E.M., Hassell K.M., Weis D.D., Smithgall T.E. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. Int. Rev. Phys. Chem. 2013;32:96–127. doi: 10.1080/0144235X.2012.751175. PubMed DOI PMC
Lennartz F., Bengtsson A., Olsen R.W., Joergensen L., Brown A., Remy L., Man P., Forest E., Barfod L.K., Adams Y., et al. Mapping the Binding Site of a Cross-Reactive Plasmodium falciparum PfEMP1 Monoclonal Antibody Inhibitory of ICAM-1 Binding. J. Immunol. 2015;195:3273–3283. doi: 10.4049/jimmunol.1501404. PubMed DOI PMC
Kacirova M., Kosek D., Kadek A., Man P., Vecer J., Herman P., Obsilova V., Obsil T. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein. J. Biol. Chem. 2015;290:16246–16260. doi: 10.1074/jbc.M115.636563. PubMed DOI PMC
Zhang J., Chalmers M.J., Stayrook K.R., Burris L.L., Wang Y., Busby S.A., Pascal B.D., Garcia-Ordonez R.D., Bruning J.B., Istrate M.A., et al. DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat. Struct. Mol. Biol. 2011;18:556–563. doi: 10.1038/nsmb.2046. PubMed DOI PMC
Graham B.W., Tao Y., Dodge K.L., Thaxton C.T., Olaso D., Young N.L., Marshall A.G., Trakselis M.A. DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase. J. Biol. Chem. 2016;291:12467–12480. doi: 10.1074/jbc.M116.719591. PubMed DOI PMC
Zhu M.M., Chitta R., Gross M.L. PLIMSTEX: A novel mass spectrometric method for the quantification of protein–ligand interactions in solution. Int. J. Mass Spectrom. 2005;240:213–220. doi: 10.1016/j.ijms.2004.09.012. DOI
Sperry J.B., Shi X., Rempel D.L., Nishimura Y., Akashi S., Gross M.L. A mass spectrometric approach to the study of DNA-binding proteins: Interaction of human TRF2 with telomeric DNA. Biochemistry. 2008;47:1797–1807. doi: 10.1021/bi702037p. PubMed DOI
Zheng J., Yong H.Y., Panutdaporn N., Liu C., Tang K., Luo D. High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res. 2015;43:1216–1230. doi: 10.1093/nar/gku1329. PubMed DOI PMC
Morton V.L., Burkitt W., O’Connor G., Stonehouse N.J., Stockley P.G., Ashcroft A.E. RNA-induced conformational changes in a viral coat protein studied by hydrogen/deuterium exchange mass spectrometry. Phys. Chem. Chem. Phys. 2010;12:13468–13475. doi: 10.1039/c0cp00817f. PubMed DOI PMC
Novak P., Kruppa G.H. Intra-molecular cross-linking of acidic residues for protein structure studies. Eur. J. Mass Spectrom. 2008;14:355–365. doi: 10.1255/ejms.963. PubMed DOI
Young M.M., Tang N., Hempel J.C., Oshiro C.M., Taylor E.W., Kuntz I.D., Gibson B.W., Dollinger G. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl. Acad. Sci. USA. 2000;97:5802–5806. doi: 10.1073/pnas.090099097. PubMed DOI PMC
Rozbesky D., Sovova Z., Marcoux J., Man P., Ettrich R., Robinson C.V., Novak P. Structural model of lymphocyte receptor NKR-P1C revealed by mass spectrometry and molecular modeling. Anal. Chem. 2013;85:1597–1604. doi: 10.1021/ac302860m. PubMed DOI
Yu E.T., Zhang Q., Fabris D. Untying the FIV frameshifting pseudoknot structure by MS3D. J. Mol. Biol. 2005;345:69–80. doi: 10.1016/j.jmb.2004.10.014. PubMed DOI
Steen H., Petersen J., Mann M., Jensen O.N. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: Tryptophans 54 and 88 of E. coli SSB cross-link to DNA. Protein Sci. 2001;10:1989–2001. doi: 10.1110/ps.07601. PubMed DOI PMC
Lenz C., Kühn-Hölsken E., Urlaub H. Detection of protein-RNA crosslinks by NanoLC-ESI-MS/MS using precursor ion scanning and multiple reaction monitoring (MRM) experiments. J. Am. Soc. Mass Spectrom. 2007;18:869–881. doi: 10.1016/j.jasms.2007.01.013. PubMed DOI
Sharma K., Hrle A., Kramer K., Sachsenberg T., Staals R.H.J., Randau L., Marchfelder A., van der Oost J., Kohlbacher O., Conti E., et al. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry. Methods. 2015;89:138–148. doi: 10.1016/j.ymeth.2015.06.005. PubMed DOI
Loeber R., Michaelson E., Fang Q., Campbell C., Pegg A.E., Tretyakova N. Cross-Linking of the DNA Repair Protein O 6 -Alkylguanine DNA Alkyltransferase to DNA in the Presence of Antitumor Nitrogen Mustards. Chem. Res. Toxicol. 2008;21:787–795. doi: 10.1021/tx7004508. PubMed DOI PMC
Loeber R., Rajesh M., Fang Q., Pegg A.E., Tretyakova N. Cross-Linking of the Human DNA Repair Protein O 6 -Alkylguanine DNA Alkyltransferase to DNA in the Presence of 1,2,3,4-Diepoxybutane. Chem. Res. Toxicol. 2006;19:645–654. doi: 10.1021/tx0600088. PubMed DOI PMC
Michaelson-Richie E.D., Ming X., Codreanu S.G., Loeber R.L., Liebler D.C., Campbell C., Tretyakova N.Y. Mechlorethamine-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. J. Proteome Res. 2011;10:2785–2796. doi: 10.1021/pr200042u. PubMed DOI PMC
Müller D.R., Schindler P., Towbin H., Wirth U., Voshol H., Hoving S., Steinmetz M.O. Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal. Chem. 2001;73:1927–1934. doi: 10.1021/ac001379a. PubMed DOI
Kang S., Mou L., Lanman J., Velu S., Brouillette W.J., Prevelige P.E. Synthesis of biotin-tagged chemical cross-linkers and their applications for mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:1719–1726. doi: 10.1002/rcm.4066. PubMed DOI PMC
Furuyama T., Nakazawa T., Nakano I., Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 2000;349:629–634. doi: 10.1042/bj3490629. PubMed DOI PMC
Borkhardt A., Repp R., Haas O.A., Leis T., Harbott J., Kreuder J., Hammermann J., Henn T., Lampert F. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23) Oncogene. 1997;14:195–202. doi: 10.1038/sj.onc.1200814. PubMed DOI
Zhang X., Tang N., Hadden T.J., Rishi A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta. 2011;1813:1978–1986. doi: 10.1016/j.bbamcr.2011.03.010. PubMed DOI
Kaestner K.H., Knochel W., Martinez D.E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000;14:142–146. PubMed
Weigelt J., Climent I., Dahlman-Wright K., Wikström M. 1H, 13C and 15N resonance assignments of the DNA binding domain of the human forkhead transcription factor AFX. J. Biomol. NMR. 2000;17:181–182. doi: 10.1023/A:1008358816478. PubMed DOI
Boura E., Silhan J., Herman P., Vecer J., Sulc M., Teisinger J., Obsilova V., Obsil T. Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. J. Biol. Chem. 2007;282:8265–8275. doi: 10.1074/jbc.M605682200. PubMed DOI
Boura E., Rezabkova L., Brynda J., Obsilova V., Obsil T. Structure of the human FOXO4-DBD-DNA complex at 1.9 Å resolution reveals new details of FOXO binding to the DNA. Acta Crystallogr. D Biol. Crystallogr. 2010;66:1351–1357. doi: 10.1107/S0907444910042228. PubMed DOI
Scalabrin M., Dixit S.M., Makshood M.M., Krzemien C.E., Fabris D. Bifunctional cross-linking approaches for mass spectrometry-based investigation of nucleic acids and protein-nucleic acid assemblies. Methods. 2018;144:64–78. doi: 10.1016/j.ymeth.2018.05.001. PubMed DOI PMC
Valis K., Prochazka L., Boura E., Chladova J., Obsil T., Rohlena J., Truksa J., Dong L.F., Ralph S.J., Neuzil J. Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res. 2011;71:946–954. doi: 10.1158/0008-5472.CAN-10-2203. PubMed DOI
Kulakovskiy I.V., Vorontsov I.E., Yevshin I.S., Sharipov R.N., Fedorova A.D., Rumynskiy E.I., Medvedeva Y.A., Magana-Mora A., Bajic V.B., Papatsenko D.A., et al. HOCOMOCO: Towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2018;46:D252–D259. doi: 10.1093/nar/gkx1106. PubMed DOI PMC
Vorontsov I.E., Kulakovskiy I.V., Makeev V.J. Jaccard index based similarity measure to compare transcription factor binding site models. Algorithms Mol. Biol. 2013;8:23. doi: 10.1186/1748-7188-8-23. PubMed DOI PMC
Obsil T., Obsilova V. Structural basis for DNA recognition by FOXO proteins. Biochim. Biophys. Acta. 2011;1813:1946–1953. doi: 10.1016/j.bbamcr.2010.11.025. PubMed DOI
Rozbeský D., Rosůlek M., Kukačka Z., Chmelík J., Man P., Novák P. Impact of Chemical Cross-Linking on Protein Structure and Function. Anal. Chem. 2018;90:1104–1113. doi: 10.1021/acs.analchem.7b02863. PubMed DOI
Kadek A., Kavan D., Marcoux J., Stojko J., Felice A.K.G., Cianférani S., Ludwig R., Halada P., Man P. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Biochim. Biophys. Acta. Gen. Subj. 2017;1861:157–167. doi: 10.1016/j.bbagen.2016.11.016. PubMed DOI
Strohalm M., Kavan D., Novák P., Volný M., Havlícek V. mMass 3: A cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 2010;82:4648–4651. doi: 10.1021/ac100818g. PubMed DOI
Webb B., Sali A. Current Protocols in Bioinformatics. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016. Comparative Protein Structure Modeling Using Modeller; pp. 5–6. PubMed PMC
Dominguez C., Boelens R., Bonvin A.M.J.J. Haddock: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. J. Am. Chem. Soc. 2003;125:1731–1737. doi: 10.1021/ja026939x. PubMed DOI
Wassenaar T.A., van Dijk M., Loureiro-Ferreira N., van der Schot G., de Vries S.J., Schmitz C., van der Zwan J., Boelens R., Giachetti A., Ferella L., et al. WeNMR: Structural Biology on the Grid. J. Grid Comput. 2012;10:743–767. doi: 10.1007/s10723-012-9246-z. DOI
Brünger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.S., Kuszewski J., Nilges M., Pannu N.S., et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 1998;54:905–921. PubMed
Pierce Chemicals . Double Agents Cross-Linking Reagents Selection Guide. Pierce Chemicals; Rockford, IL, USA: 1999.
Dans P.D., Crespo A., Estrin D.A., Coitiño E.L. Structural and Energetic Study of Cisplatin and Derivatives: Comparison of the Performance of Density Funtional Theory Implementations. J. Chem. Theory Comput. 2008;4:740–750. doi: 10.1021/ct7002385. PubMed DOI
Rosen M.S., Spokoyny A.M., Machan C.W., Stern C., Sarjeant A., Mirkin C.A. Chelating Effect as a Driving Force for the Selective Formation of Heteroligated Pt(II) Complexes with Bidentate Phosphino-Chalcoether Ligands. Inorg. Chem. 2011;50:1411–1419. doi: 10.1021/ic101973s. PubMed DOI PMC
DeLano W.L. The PyMOL Molecular Graphics System. Schrodinger Inc; Portland, OR, USA: 2002.
Kavan D., Man P. MSTools—Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302:53–58. doi: 10.1016/j.ijms.2010.07.030. DOI
Kadek A., Mrazek H., Halada P., Rey M., Schriemer D.C., Man P. Aspartic Protease Nepenthesin-1 as a Tool for Digestion in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2014;86:4287–4294. doi: 10.1021/ac404076j. PubMed DOI
Timerbaev A.R., Hartinger C.G., Aleksenko S.S., Keppler B.K. Interactions of antitumor metallodrugs with serum proteins: Advances in characterization using modern analytical methodology. Chem. Rev. 2006;106:2224–2248. doi: 10.1021/cr040704h. PubMed DOI
Deubel D.V. Factors governing the kinetic competition of nitrogen and sulfur ligands in cisplatin binding to biological targets. J. Am. Chem. Soc. 2004;126:5999–6004. doi: 10.1021/ja0499602. PubMed DOI
Nafisi S., Norouzi Z. A comparative study on the interaction of cis- and trans-platin with DNA and RNA. DNA Cell Biol. 2009;28:469–477. doi: 10.1089/dna.2009.0894. PubMed DOI
Buchan D.W.A., Minneci F., Nugent T.C.O., Bryson K., Jones D.T. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2013;41:W349–W357. doi: 10.1093/nar/gkt381. PubMed DOI PMC
Eijkelenboom A., Burgering B.M.T. FOXOs: Signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 2013;14:83–97. doi: 10.1038/nrm3507. PubMed DOI
Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis
Targeting ERK-Hippo Interplay in Cancer Therapy