Dynamic distinctions in the Na+/Ca2+ exchanger adopting the inward- and outward-facing conformational states

. 2017 Jul 21 ; 292 (29) : 12311-12323. [epub] 20170601

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28572509
Odkazy

PubMed 28572509
PubMed Central PMC5519378
DOI 10.1074/jbc.m117.787168
PII: S0021-9258(20)42998-9
Knihovny.cz E-zdroje

Na+/Ca2+ exchanger (NCX) proteins operate through the alternating access mechanism, where the ion-binding pocket is exposed in succession either to the extracellular or the intracellular face of the membrane. The archaeal NCX_Mj (Methanococcus jannaschii NCX) system was used to resolve the backbone dynamics in the inward-facing (IF) and outward-facing (OF) states by analyzing purified preparations of apo- and ion-bound forms of NCX_Mj-WT and its mutant, NCX_Mj-5L6-8. First, the exposure of extracellular and cytosolic vestibules to the bulk phase was evaluated as the reactivity of single cysteine mutants to a fluorescent probe, verifying that NCX_Mj-WT and NCX_Mj-5L6-8 preferentially adopt the OF and IF states, respectively. Next, hydrogen-deuterium exchange-mass spectrometry (HDX-MS) was employed to analyze the backbone dynamics profiles in proteins, preferentially adopting the OF (WT) and IF (5L6-8) states either in the presence or absence of ions. Characteristic differences in the backbone dynamics were identified between apo NCX_Mj-WT and NCX_Mj-5L6-8, thereby underscoring specific conformational patterns owned by the OF and IF states. Saturating concentrations of Na+ or Ca2+ specifically modify HDX patterns, revealing that the ion-bound/occluded states are much more stable (rigid) in the OF than in the IF state. Conformational differences observed in the ion-occluded OF and IF states can account for diversifying the ion-release dynamics and apparent affinity (Km ) at opposite sides of the membrane, where specific structure-dynamic elements can effectively match the rates of bidirectional ion movements at physiological ion concentrations.

Zobrazit více v PubMed

Jardetzky O. (1966) Simple allosteric model for membrane pumps. Nature 211, 969–970 PubMed

Kaback H. R., Smirnova I., Kasho V., Nie Y., and Zhou Y. (2011) The alternating access transport mechanism in LacY. J. Membr. Biol. 239, 85–93 PubMed PMC

Keller R., Ziegler C., and Schneider D. (2014) When two turn into one: evolution of membrane transporters from half-modules. Biol. Chem. 395, 1379–1388 PubMed

Forrest L. R., Krämer R., and Ziegler C. (2011) The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 1807, 167–188 PubMed

Deng D., and Yan N. (2016) GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci. 25, 546–558 PubMed PMC

Drew D., and Boudker O. (2016) Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 PubMed

Giladi M., Tal I., and Khananshvili D. (2016) Structural features of ion transport and allosteric regulation in sodium-calcium exchanger (NCX) proteins. Front. Physiol. 7, 30. PubMed PMC

Carafoli E. (1987) Intracellular calcium homeostasis. Annu. Rev. Biochem. 56, 395–433 PubMed

Philipson K. D., and Nicoll D. A. (2000) Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133 PubMed

Khananshvili D. (2013) The SLC8 gene family of sodium-calcium exchangers (NCX)– structure, function, and regulation in health and disease. Mol. Aspects Med. 34, 220–235 PubMed

Khananshvili D. (2014) Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions. Pflügers Arch. 466, 43–60 PubMed

Lytton J. (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+-transport. Biochem. J. 406, 365–382 PubMed

On C., Marshall C. R., Chen N., Moyes C. D., and Tibbits G. F. (2008) Gene structure evolution of the Na+-Ca2+ exchanger (NCX) family. BMC Evol. Biol. 8, 127–142 PubMed PMC

Liao J., Li H., Zeng W., Sauer D. B., Belmares R., and Jiang Y. (2012) Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335, 686–690 PubMed

Nishizawa T., Kita S., Maturana A. D., Furuya N., Hirata K., Kasuya G., Ogasawara S., Dohmae N., Iwamoto T., Ishitani R., and Nureki O. (2013) Structural basis for the counter-transport mechanism of a H+/Ca2+ exchanger. Science 341, 168–172 PubMed

Waight A. B., Pedersen B. P., Schlessinger A., Bonomi M., Chau B. H., Roe-Zurz Z., Risenmay A. J., Sali A., and Stroud R. M. (2013) Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499, 107–110 PubMed PMC

Wu M., Tong S., Waltersperger S., Diederichs K., Wang M., and Zheng L. (2013) Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation. Proc. Natl. Acad. Sci. U.S.A. 110, 11367–11372 PubMed PMC

Schnetkamp P. P. (2013) The SLC24 gene family of Na+/Ca2+-K+ exchangers: from sight and smell to memory consolidation and skin pigmentation. Mol. Aspects Med. 34, 455–464 PubMed

Reeves J. P., and Hale C. C. (1984) The stoichiometry of the cardiac sodium-calcium exchange system. J. Biol. Chem. 259, 7733–7739 PubMed

Bers D. M., and Ginsburg K. S. (2007) Na:Ca stoichiometry and cytosolic Ca-dependent activation of NCX in intact cardiomyocytes. Ann. N.Y. Acad. Sci. 1099, 326–338 PubMed

Khananshvili D. (1990) Distinction between the two basic mechanisms of cation transport in the cardiac Na+-Ca2+ exchange system. Biochemistry 29, 2437–2442 PubMed

Niggli E., and Lederer W. J. (1991) Molecular operations of the sodium-calcium exchanger revealed by conformational currents. Nature 349, 621–624 PubMed

Almagor L., Giladi M., van Dijk L., Buki T., Hiller R., and Khananshvili D. (2014) Functional asymmetry of bidirectional Ca2+-movements in an archaeal sodium-calcium exchanger (NCX_Mj). Cell Calcium 56, 276–284 PubMed

Baazov D., Wang X., and Khananshvili D. (1999) Time-resolved monitoring of electrogenic Na+-Ca2+ exchange in the isolated cardiac sarcolemma vesicles by using a rapid-response fluorescent probe. Biochemistry 38, 1435–1445 PubMed

Khananshvili D., Weil-Maslansky E., and Baazov D. (1996) Kinetics and mechanism: modulation of ion transport in the cardiac sarcolemma sodium-calcium exchanger by protons, monovalent ions, and temperature. Ann. N.Y. Acad. Sci. 779, 217–235 PubMed

Liao J., Marinelli F., Lee C., Huang Y., Faraldo-Gómez J. D., and Jiang Y. (2016) Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger. Nat. Struct. Mol. Biol. 23, 590–599 PubMed PMC

Marinelli F., Almagor L., Hiller R., Giladi M., Khananshvili D., and Faraldo-Gómez J. D. (2014) Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation. Proc. Natl. Acad. Sci. U.S.A. 111, E5354–E5362 PubMed PMC

Giladi M., Almagor L., van Dijk L., Hiller R., Man P., Forest E., and Khananshvili D. (2016) Asymmetric preorganization of inverted pair residues in the sodium-calcium exchanger. Sci. Rep. 6, 20753. PubMed PMC

DiPolo R., and Beaugé L. (2006) Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86, 155–203 PubMed

Forrest L. R. (2013) (Pseudo-)symmetrical transport. Science 339, 399–401 PubMed

Forrest L. R. (2015) Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44, 311–337 PubMed PMC

Stein W. D. (1986) Transport and Diffusion Across Cell Membranes, pp. 55–120, Academic Press, New York

Giladi M., Shor R., Lisnyansky M., and Khananshvili D. (2016) Structure-functional basis of ion transport in sodium-calcium exchanger (NCX) proteins. Int. J. Mol. Sci. 17, E1949. PubMed PMC

Bai Y., Englander J. J., Mayne L., Milne J. S., and Englander S. W. (1995) Thermodynamic parameters from hydrogen exchange measurements. Methods Enzymol. 259, 344–356 PubMed

Englander J. J., Del Mar C., Li W., Englander S. W., Kim J. S., Stranz D. D., Hamuro Y., and Woods V. L. Jr. (2003) Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 100, 7057–7062 PubMed PMC

Konermann L., Pan J., and Liu Y. H. (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 PubMed

Chalmers M. J., Busby S. A., Pascal B. D., West G. M., and Griffin P. R. (2011) Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Exp. Rev. Proteomics 8, 43–59 PubMed PMC

Demmers J. A., Haverkamp J., Heck A. J., Koeppe R. E., and Killian J. A. (2000) Electrospray ionization mass spectrometry as a tool to analyze hydrogen/deuterium exchange kinetics of transmembrane peptides in lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 97, 3189–3194 PubMed PMC

Giladi M., Lee S. Y., Ariely Y., Teldan Y., Granit R., Strulovich R., Haitin Y., Chung K. Y., and Khananshvili D. (2017) Structure-based dynamic arrays in regulatory domains of sodium-calcium exchanger (NCX) isoforms. Sci. Rep. 7, 993. PubMed PMC

Giladi M., Lee S. Y., Hiller R., Chung K. Y., and Khananshvili D. (2015) Structure-dynamic determinants governing a mode of regulatory response and propagation of allosteric signal in splice variants of Na+/Ca2+ exchange (NCX) proteins. Biochem. J. 465, 489–501 PubMed

Lee S. Y., Giladi M., Bohbot H., Hiller R., Chung K. Y., and Khananshvili D. (2016) Structure-dynamic basis of splicing dependent regulation in tissue-specific variants of the sodium-calcium exchanger (NCX1). FASEB J. 30, 1356–1366 PubMed

Nie Y., Ermolova N., and Kaback H. R. (2007) Site-directed alkylation of LacY: effect of the proton electrochemical gradient. J. Mol. Biol. 374, 356–364 PubMed PMC

Jiang X., Nie Y., and Kaback H. R. (2011) Site-directed alkylation studies with LacY provide evidence for the alternating access model of transport. Biochemistry 50, 1634–1640 PubMed PMC

Tsai C. J., Ma B., and Nussinov R. (1999) Folding and binding cascades: shifts in energy landscapes. Proc. Natl. Acad. Sci. U.S.A. 96, 9970–9972 PubMed PMC

Gifford J. L., Walsh M. P., and Vogel H. J. (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem. J. 405, 199–221 PubMed

Tsai C. J., del Sol A., and Nussinov R. (2008) Allostery: absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol. 378, 1–11 PubMed PMC

Kavan D., and Man P. (2011) MSTools–Web-based application for visualization and presentation of HDX-MS data. Int. J. Mass Spectrom. 302, 53–58

Refaeli B., Giladi M., Hiller R., and Khananshvili D. (2016) Structure-based engineering of lithium transporting capacity in the archaeal sodium-calcium exchanger (NCX_Mj). Biochemistry 55, 1673–1676 PubMed

Martí-Renom M. A., Stuart A. C., Fiser A., Sánchez R., Melo F., and Sali A. (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 PubMed

Zobrazit více v PubMed

PDB
5HXH, 5HXE, 5HXR

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...