Dynamic distinctions in the Na+/Ca2+ exchanger adopting the inward- and outward-facing conformational states
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
28572509
PubMed Central
PMC5519378
DOI
10.1074/jbc.m117.787168
PII: S0021-9258(20)42998-9
Knihovny.cz E-zdroje
- Klíčová slova
- calcium, calcium transport, calcium-binding protein, exchanger, hydrogen exchange mass spectrometry, membrane protein, membrane transport, sodium-calcium exchange, transporter,
- MeSH
- apoproteiny chemie genetika metabolismus MeSH
- archeální proteiny chemie genetika metabolismus MeSH
- buněčná membrána chemie MeSH
- cystein chemie MeSH
- interakční proteinové domény a motivy MeSH
- inzerční mutageneze MeSH
- kinetika MeSH
- konformace proteinů MeSH
- ligandy MeSH
- Methanocaldococcus metabolismus MeSH
- molekulární modely * MeSH
- mutace MeSH
- peptidové fragmenty chemie genetika metabolismus MeSH
- pumpa pro výměnu sodíku a vápníku chemie genetika metabolismus MeSH
- rekombinantní proteiny chemie metabolismus MeSH
- sodík metabolismus MeSH
- stabilita proteinů MeSH
- substituce aminokyselin MeSH
- vápník metabolismus MeSH
- vazebná místa MeSH
- vodík-deuteriová výměna MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- apoproteiny MeSH
- archeální proteiny MeSH
- cystein MeSH
- ligandy MeSH
- peptidové fragmenty MeSH
- pumpa pro výměnu sodíku a vápníku MeSH
- rekombinantní proteiny MeSH
- sodík MeSH
- vápník MeSH
Na+/Ca2+ exchanger (NCX) proteins operate through the alternating access mechanism, where the ion-binding pocket is exposed in succession either to the extracellular or the intracellular face of the membrane. The archaeal NCX_Mj (Methanococcus jannaschii NCX) system was used to resolve the backbone dynamics in the inward-facing (IF) and outward-facing (OF) states by analyzing purified preparations of apo- and ion-bound forms of NCX_Mj-WT and its mutant, NCX_Mj-5L6-8. First, the exposure of extracellular and cytosolic vestibules to the bulk phase was evaluated as the reactivity of single cysteine mutants to a fluorescent probe, verifying that NCX_Mj-WT and NCX_Mj-5L6-8 preferentially adopt the OF and IF states, respectively. Next, hydrogen-deuterium exchange-mass spectrometry (HDX-MS) was employed to analyze the backbone dynamics profiles in proteins, preferentially adopting the OF (WT) and IF (5L6-8) states either in the presence or absence of ions. Characteristic differences in the backbone dynamics were identified between apo NCX_Mj-WT and NCX_Mj-5L6-8, thereby underscoring specific conformational patterns owned by the OF and IF states. Saturating concentrations of Na+ or Ca2+ specifically modify HDX patterns, revealing that the ion-bound/occluded states are much more stable (rigid) in the OF than in the IF state. Conformational differences observed in the ion-occluded OF and IF states can account for diversifying the ion-release dynamics and apparent affinity (Km ) at opposite sides of the membrane, where specific structure-dynamic elements can effectively match the rates of bidirectional ion movements at physiological ion concentrations.
Zobrazit více v PubMed
Jardetzky O. (1966) Simple allosteric model for membrane pumps. Nature 211, 969–970 PubMed
Kaback H. R., Smirnova I., Kasho V., Nie Y., and Zhou Y. (2011) The alternating access transport mechanism in LacY. J. Membr. Biol. 239, 85–93 PubMed PMC
Keller R., Ziegler C., and Schneider D. (2014) When two turn into one: evolution of membrane transporters from half-modules. Biol. Chem. 395, 1379–1388 PubMed
Forrest L. R., Krämer R., and Ziegler C. (2011) The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 1807, 167–188 PubMed
Deng D., and Yan N. (2016) GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci. 25, 546–558 PubMed PMC
Drew D., and Boudker O. (2016) Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 PubMed
Giladi M., Tal I., and Khananshvili D. (2016) Structural features of ion transport and allosteric regulation in sodium-calcium exchanger (NCX) proteins. Front. Physiol. 7, 30. PubMed PMC
Carafoli E. (1987) Intracellular calcium homeostasis. Annu. Rev. Biochem. 56, 395–433 PubMed
Philipson K. D., and Nicoll D. A. (2000) Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133 PubMed
Khananshvili D. (2013) The SLC8 gene family of sodium-calcium exchangers (NCX)– structure, function, and regulation in health and disease. Mol. Aspects Med. 34, 220–235 PubMed
Khananshvili D. (2014) Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions. Pflügers Arch. 466, 43–60 PubMed
Lytton J. (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+-transport. Biochem. J. 406, 365–382 PubMed
On C., Marshall C. R., Chen N., Moyes C. D., and Tibbits G. F. (2008) Gene structure evolution of the Na+-Ca2+ exchanger (NCX) family. BMC Evol. Biol. 8, 127–142 PubMed PMC
Liao J., Li H., Zeng W., Sauer D. B., Belmares R., and Jiang Y. (2012) Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335, 686–690 PubMed
Nishizawa T., Kita S., Maturana A. D., Furuya N., Hirata K., Kasuya G., Ogasawara S., Dohmae N., Iwamoto T., Ishitani R., and Nureki O. (2013) Structural basis for the counter-transport mechanism of a H+/Ca2+ exchanger. Science 341, 168–172 PubMed
Waight A. B., Pedersen B. P., Schlessinger A., Bonomi M., Chau B. H., Roe-Zurz Z., Risenmay A. J., Sali A., and Stroud R. M. (2013) Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499, 107–110 PubMed PMC
Wu M., Tong S., Waltersperger S., Diederichs K., Wang M., and Zheng L. (2013) Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation. Proc. Natl. Acad. Sci. U.S.A. 110, 11367–11372 PubMed PMC
Schnetkamp P. P. (2013) The SLC24 gene family of Na+/Ca2+-K+ exchangers: from sight and smell to memory consolidation and skin pigmentation. Mol. Aspects Med. 34, 455–464 PubMed
Reeves J. P., and Hale C. C. (1984) The stoichiometry of the cardiac sodium-calcium exchange system. J. Biol. Chem. 259, 7733–7739 PubMed
Bers D. M., and Ginsburg K. S. (2007) Na:Ca stoichiometry and cytosolic Ca-dependent activation of NCX in intact cardiomyocytes. Ann. N.Y. Acad. Sci. 1099, 326–338 PubMed
Khananshvili D. (1990) Distinction between the two basic mechanisms of cation transport in the cardiac Na+-Ca2+ exchange system. Biochemistry 29, 2437–2442 PubMed
Niggli E., and Lederer W. J. (1991) Molecular operations of the sodium-calcium exchanger revealed by conformational currents. Nature 349, 621–624 PubMed
Almagor L., Giladi M., van Dijk L., Buki T., Hiller R., and Khananshvili D. (2014) Functional asymmetry of bidirectional Ca2+-movements in an archaeal sodium-calcium exchanger (NCX_Mj). Cell Calcium 56, 276–284 PubMed
Baazov D., Wang X., and Khananshvili D. (1999) Time-resolved monitoring of electrogenic Na+-Ca2+ exchange in the isolated cardiac sarcolemma vesicles by using a rapid-response fluorescent probe. Biochemistry 38, 1435–1445 PubMed
Khananshvili D., Weil-Maslansky E., and Baazov D. (1996) Kinetics and mechanism: modulation of ion transport in the cardiac sarcolemma sodium-calcium exchanger by protons, monovalent ions, and temperature. Ann. N.Y. Acad. Sci. 779, 217–235 PubMed
Liao J., Marinelli F., Lee C., Huang Y., Faraldo-Gómez J. D., and Jiang Y. (2016) Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger. Nat. Struct. Mol. Biol. 23, 590–599 PubMed PMC
Marinelli F., Almagor L., Hiller R., Giladi M., Khananshvili D., and Faraldo-Gómez J. D. (2014) Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation. Proc. Natl. Acad. Sci. U.S.A. 111, E5354–E5362 PubMed PMC
Giladi M., Almagor L., van Dijk L., Hiller R., Man P., Forest E., and Khananshvili D. (2016) Asymmetric preorganization of inverted pair residues in the sodium-calcium exchanger. Sci. Rep. 6, 20753. PubMed PMC
DiPolo R., and Beaugé L. (2006) Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86, 155–203 PubMed
Forrest L. R. (2013) (Pseudo-)symmetrical transport. Science 339, 399–401 PubMed
Forrest L. R. (2015) Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44, 311–337 PubMed PMC
Stein W. D. (1986) Transport and Diffusion Across Cell Membranes, pp. 55–120, Academic Press, New York
Giladi M., Shor R., Lisnyansky M., and Khananshvili D. (2016) Structure-functional basis of ion transport in sodium-calcium exchanger (NCX) proteins. Int. J. Mol. Sci. 17, E1949. PubMed PMC
Bai Y., Englander J. J., Mayne L., Milne J. S., and Englander S. W. (1995) Thermodynamic parameters from hydrogen exchange measurements. Methods Enzymol. 259, 344–356 PubMed
Englander J. J., Del Mar C., Li W., Englander S. W., Kim J. S., Stranz D. D., Hamuro Y., and Woods V. L. Jr. (2003) Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 100, 7057–7062 PubMed PMC
Konermann L., Pan J., and Liu Y. H. (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 PubMed
Chalmers M. J., Busby S. A., Pascal B. D., West G. M., and Griffin P. R. (2011) Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Exp. Rev. Proteomics 8, 43–59 PubMed PMC
Demmers J. A., Haverkamp J., Heck A. J., Koeppe R. E., and Killian J. A. (2000) Electrospray ionization mass spectrometry as a tool to analyze hydrogen/deuterium exchange kinetics of transmembrane peptides in lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 97, 3189–3194 PubMed PMC
Giladi M., Lee S. Y., Ariely Y., Teldan Y., Granit R., Strulovich R., Haitin Y., Chung K. Y., and Khananshvili D. (2017) Structure-based dynamic arrays in regulatory domains of sodium-calcium exchanger (NCX) isoforms. Sci. Rep. 7, 993. PubMed PMC
Giladi M., Lee S. Y., Hiller R., Chung K. Y., and Khananshvili D. (2015) Structure-dynamic determinants governing a mode of regulatory response and propagation of allosteric signal in splice variants of Na+/Ca2+ exchange (NCX) proteins. Biochem. J. 465, 489–501 PubMed
Lee S. Y., Giladi M., Bohbot H., Hiller R., Chung K. Y., and Khananshvili D. (2016) Structure-dynamic basis of splicing dependent regulation in tissue-specific variants of the sodium-calcium exchanger (NCX1). FASEB J. 30, 1356–1366 PubMed
Nie Y., Ermolova N., and Kaback H. R. (2007) Site-directed alkylation of LacY: effect of the proton electrochemical gradient. J. Mol. Biol. 374, 356–364 PubMed PMC
Jiang X., Nie Y., and Kaback H. R. (2011) Site-directed alkylation studies with LacY provide evidence for the alternating access model of transport. Biochemistry 50, 1634–1640 PubMed PMC
Tsai C. J., Ma B., and Nussinov R. (1999) Folding and binding cascades: shifts in energy landscapes. Proc. Natl. Acad. Sci. U.S.A. 96, 9970–9972 PubMed PMC
Gifford J. L., Walsh M. P., and Vogel H. J. (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem. J. 405, 199–221 PubMed
Tsai C. J., del Sol A., and Nussinov R. (2008) Allostery: absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol. 378, 1–11 PubMed PMC
Kavan D., and Man P. (2011) MSTools–Web-based application for visualization and presentation of HDX-MS data. Int. J. Mass Spectrom. 302, 53–58
Refaeli B., Giladi M., Hiller R., and Khananshvili D. (2016) Structure-based engineering of lithium transporting capacity in the archaeal sodium-calcium exchanger (NCX_Mj). Biochemistry 55, 1673–1676 PubMed
Martí-Renom M. A., Stuart A. C., Fiser A., Sánchez R., Melo F., and Sali A. (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 PubMed
Structural dynamics of Na+ and Ca2+ interactions with full-size mammalian NCX
Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins
PDB
5HXH, 5HXE, 5HXR