An Assessment of Blood Vessel Remodeling of Nanofibrous Poly(ε-Caprolactone) Vascular Grafts in a Rat Animal Model

. 2023 Feb 03 ; 14 (2) : . [epub] 20230203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36826887

Grantová podpora
Fulbright Czech Republic Fulbright Czech Republic

The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have changed after 6 months, at which time the majority of cells was discovered in the inner layer where the regeneration of the vessel wall was found to have occurred. Six months following implantation, the endothelialization of the graft lumen was complete, and no vasa vasorum were found to be present. Newly formed tissue resembling native elastic arteries with concentric layers composed of smooth muscle cells, collagen, and elastin was found in the implanted polycaprolactone-based grafts. Moreover, the inner layer of the graft was seen to have developed structural similarities to the regular aortic wall. The grafts appeared to be well tolerated, and no severe adverse reaction was recorded with the exception of one case of cartilaginous metaplasia close to the junctional suture.

Zobrazit více v PubMed

Vaz C.M., Tuij S., Bouten C.V.C., Baaijens F.P.T. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005;1:575–582. doi: 10.1016/j.actbio.2005.06.006. PubMed DOI

Wu H., Fan J., Chu C.C., Wu J. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J. Mater. Sci. Mater. Med. 2010;21:3207–3215. doi: 10.1007/s10856-010-4164-8. PubMed DOI

Hu J.J., Chao W.C., Lee P.Y., Huang C.H. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: A scaffold membrane approach. J. Mech. Behav. Biomed. Mater. 2012;13:140–155. doi: 10.1016/j.jmbbm.2012.04.013. PubMed DOI

Yalcin I., Horakova J., Mikes P., Gok Sadikoglu T., Domin R., Lukas D. Design of polycaprolactone vascular grafts. J. Ind. Text. 2016;45:813–833. doi: 10.1177/1528083714540701. DOI

Pektok E., Nottelet B., Tille J.C., Gurny R., Kalangos A., Moeller M., Walpoth B.H. Vascular grafts in the rat systemic arterial circulation degradation and healing characteristics of small-diameter poly(e-caprolactone) Circulation. 2008;118:2563–2570. doi: 10.1161/CIRCULATIONAHA.108.795732. PubMed DOI

Woodruff M.A., Hutmacher D.W. The Return of a Forgotten Polymer-Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI

de Valence S., Tille J.C., Mugnai D., Mrowczynski W., Gurny R., Möller M., Walpoth B.H. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33:38–47. doi: 10.1016/j.biomaterials.2011.09.024. PubMed DOI

Wu Y., Qin Y., Wang Z., Wang J., Zhang C., Li C., Kong D. The regeneration og macro-porous electrospun poly(ε-caprolactone) vascular graft during long-term in situ implantation. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106:1618–1627. doi: 10.1002/jbm.b.33967. PubMed DOI

Wang Z., Cui Y., Wang J., Yang X., Wu Y., Wang K., Gao X., Li D., Li Y., Zheng X.L., et al. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials. 2014;35:5700–5710. doi: 10.1016/j.biomaterials.2014.03.078. PubMed DOI

Milleret V., Hefti T., Hall H., Vogel V., Eberli D. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomater. 2012;8:4349–4356. doi: 10.1016/j.actbio.2012.07.032. PubMed DOI

Dokuchaeva A.A., Mochalova A.B., Timchenko T.P., Podolskaya K.S., Pashkovskaya O.A., Karpova E.V., Ivanov I.A., Filatova N.A., Zhuravleva I.Y. In Vivo Evaluation of PCL Vascular Grafts Implanted in Rat Abdominal Aorta. Polymers. 2022;14:3313. doi: 10.3390/polym14163313. PubMed DOI PMC

Horakova J., Mikes P., Saman A., Jencova V., Klapstova A., Svarcova T., Ackermann M., Novotny V., Suchy T., Lukas D. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. 2018;92:132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI

Prosecka E., Rampichova M., Litvinec A., Tonar Zm Kralickova M., Vojtova L., Kochova P., Plencner M., Buzgo M., Mickova A., Jancar J., et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. A. 2015;103:671–682. doi: 10.1002/jbm.a.35216. PubMed DOI

Rampichova M., Chvojka J., Jencova V., Kubikova T., Tonar Z., Erben J., Buzgo M., Dankova J., Litvinec A., Vocetkova K., et al. The combination of nanofibrous and microfibrous materials for enhancement of cell infiltration and in vivo bone tissue formation. Biomed. Mater. 2018;13:025004. doi: 10.1088/1748-605X/aa9717. PubMed DOI

Nottelet B., Pektok E., Mandracchia D., Tille J.C., Walpoth B., Gurny R., Moller M. Factorial design optimization and in vivo feasibility of poly(ε-caprolactone)-micro- and nanofiber-based small diameter vascular grafts. J. Biomed. Mater. Res. A. 2009;89:865–875. doi: 10.1002/jbm.a.32023. PubMed DOI

de Valence S., Tille J.C., Gilibert J.P., Mrowczynski W., Gurny R., Walpoth B.H., Moller M. Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater. 2012;8:3914–3920. doi: 10.1016/j.actbio.2012.06.035. PubMed DOI

De Valence S., Tille J.C., Chaabane C., Gurny R., Bochaton-Piallat M.L., Walpoth B.H., Moller M. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur. J. Pharm. Biopharm. 2013;85:78–86. doi: 10.1016/j.ejpb.2013.06.012. PubMed DOI

Tille J.C., de Valence S., Mandracchia D., Nottelet B., Innocente F., Gurny R., Moller M., Walpoth B.H. Histological assessment of drug-eluting grafts related to implantation site. J. Dev. Biol. 2016;4:11. doi: 10.3390/jdb4010011. PubMed DOI PMC

Yang X., Wei J., Lei D., Liu Y., Wu W. Appropriate density of PCL nano-fiber sheath promoted muscular remodeling of PGS/PCL grafts in arterial circulation. Biomaterials. 2016;88:34–47. doi: 10.1016/j.biomaterials.2016.02.026. PubMed DOI

Pan Y., Zhou X., Wei Y., Zhang Q., Wang T., Zhu M., Li W., Huang R., Liu R., Chen J., et al. Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Sci. Rep. 2017;7:3615. doi: 10.1038/s41598-017-03851-1. PubMed DOI PMC

Wang Z., Wu Y., Wang J., Zhang C., Yan H., Zhu M., Wang K., Li C., Xu Q., Kong D. Effect of Resveratrol on Modulation of Endothelial Cells and Macrophages for Rapid Vascular Regeneration from Electrospun Poly(ε-caprolactone) Scaffolds. ACS Appl. Mater. Interfaces. 2017;9:19541–19551. doi: 10.1021/acsami.6b16573. PubMed DOI

Wang K., Zhang Q., Zhao L., Pan Y., Wang T., Zhi D., Ma S., Zhang P., Zhao T., Zhang S., et al. Functional Modification of Electrospun Poly(ε-caprolactone) Vascular Grafts with the Fusion Protein VEGF-HGFI Enhanced Vascular Regeneration. ACS Appl. Mater. Interfaces. 2017;9:11415–11427. doi: 10.1021/acsami.6b16713. PubMed DOI

Li W., Chen J., Xu P., Zhu M., Wu Y., Wang Z., Zhao T., Cheng Q., Wang K., Fan G., et al. Long-term evaluation of vascular grafts with circumferentially aligned microfibers in a rat abdominal aorta replacement model. J. Appl. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:2596–2604. doi: 10.1002/jbm.b.34076. PubMed DOI

Bancroft J.D., Stevens A. Theory and Practice of Histological Techniques. Churchill Livingstone; New York, NY, USA: 1996.

Kocova J. Overall staining of connective tissue and the muscular layer of vessels. Folia Morphol. 1970;18:293–295. PubMed

Conklin J.L. Staining properties of hyaline cartilage. Am. J. Anat. 1963;112:259–267. doi: 10.1002/aja.1001120209. PubMed DOI

Kiernan J.A. Histological and Histochemical Methods: Theory and Practice. 4th ed. Scion Publishing; Banbury, UK: 2008.

Mouton P.R. Principles and Practices of Unbiased Stereology. An Introduction for Bioscientists. The Johns Hopkins University Press; Baltimore, MD, USA: 2002.

Tonar Z., Tomasek P., Loskot P., Janacek J., Kralickova M., Witter K. Vasa vasorum in the tunica media and tunica adventitia of the porcine aorta. Ann. Anat. 2016;205:22–36. doi: 10.1016/j.aanat.2016.01.008. PubMed DOI

Philimonenko A.A., Janacek J., Hozak P. Statistical evaluation of colocalization patterns in immunogold labeling experiments. J. Struct. Biol. 2000;132:201–210. doi: 10.1006/jsbi.2000.4326. PubMed DOI

Gundersen H.J. Notes on the estimation of the numerical density of arbitrary profiles: The edge effect. J. Microsc. 1977;111:219–223. doi: 10.1111/j.1365-2818.1977.tb00062.x. DOI

Sterio D.C. The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 1984;134:127–136. doi: 10.1111/j.1365-2818.1984.tb02501.x. PubMed DOI

Gundersen H.J. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J. Microsc. 1986;143:3–45. doi: 10.1111/j.1365-2818.1986.tb02764.x. PubMed DOI

Foldager C.B., Nyengaard J.R., Lind M., Spector M. A Stereological Method for the Quantitative Evaluation of Cartilage Repair Tissue. Cartilage. 2014;6:123–132. doi: 10.1177/1947603514560655. PubMed DOI PMC

Brown D.L., Staup M., Swanson C. Stereology of the Peripheral Nervous System. Toxicol. Pathol. 2020;48:37–48. doi: 10.1177/0192623319854746. PubMed DOI

Van Vré E.A., van Beusekom H.M., Vrints C.h.J., Bosmans J.M., Bult H., Van der Giessem W.J. Stereology: A simplified and more time-efficient method than planimetry for the quantitative analysis of vascular structures in different models of intimal thickening. Cardiovasc. Pathol. 2007;16:43–50. doi: 10.1016/j.carpath.2006.08.001. PubMed DOI

Ingram D.A., Caplice N.M., Yoder M.C. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 2005;106:1525–1531. doi: 10.1182/blood-2005-04-1509. PubMed DOI

Yuan Y., Engler A.J., Raredon M.S., Le A., Baevova P., Yoder M.C., Niklason L.E. Epac agonist improves barrier function in iPSC-derived endothelial colony forming cells for whole organ tissue engineering. Biomaterials. 2019;200:25–34. doi: 10.1016/j.biomaterials.2019.02.005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...