An Assessment of Blood Vessel Remodeling of Nanofibrous Poly(ε-Caprolactone) Vascular Grafts in a Rat Animal Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Fulbright Czech Republic
Fulbright Czech Republic
PubMed
36826887
PubMed Central
PMC9965469
DOI
10.3390/jfb14020088
PII: jfb14020088
Knihovny.cz E-zdroje
- Klíčová slova
- electrospinning, histological evaluation, polycaprolactone, stereology, vascular graft, vascular remodeling,
- Publikační typ
- časopisecké články MeSH
The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have changed after 6 months, at which time the majority of cells was discovered in the inner layer where the regeneration of the vessel wall was found to have occurred. Six months following implantation, the endothelialization of the graft lumen was complete, and no vasa vasorum were found to be present. Newly formed tissue resembling native elastic arteries with concentric layers composed of smooth muscle cells, collagen, and elastin was found in the implanted polycaprolactone-based grafts. Moreover, the inner layer of the graft was seen to have developed structural similarities to the regular aortic wall. The grafts appeared to be well tolerated, and no severe adverse reaction was recorded with the exception of one case of cartilaginous metaplasia close to the junctional suture.
Zobrazit více v PubMed
Vaz C.M., Tuij S., Bouten C.V.C., Baaijens F.P.T. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005;1:575–582. doi: 10.1016/j.actbio.2005.06.006. PubMed DOI
Wu H., Fan J., Chu C.C., Wu J. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J. Mater. Sci. Mater. Med. 2010;21:3207–3215. doi: 10.1007/s10856-010-4164-8. PubMed DOI
Hu J.J., Chao W.C., Lee P.Y., Huang C.H. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: A scaffold membrane approach. J. Mech. Behav. Biomed. Mater. 2012;13:140–155. doi: 10.1016/j.jmbbm.2012.04.013. PubMed DOI
Yalcin I., Horakova J., Mikes P., Gok Sadikoglu T., Domin R., Lukas D. Design of polycaprolactone vascular grafts. J. Ind. Text. 2016;45:813–833. doi: 10.1177/1528083714540701. DOI
Pektok E., Nottelet B., Tille J.C., Gurny R., Kalangos A., Moeller M., Walpoth B.H. Vascular grafts in the rat systemic arterial circulation degradation and healing characteristics of small-diameter poly(e-caprolactone) Circulation. 2008;118:2563–2570. doi: 10.1161/CIRCULATIONAHA.108.795732. PubMed DOI
Woodruff M.A., Hutmacher D.W. The Return of a Forgotten Polymer-Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI
de Valence S., Tille J.C., Mugnai D., Mrowczynski W., Gurny R., Möller M., Walpoth B.H. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33:38–47. doi: 10.1016/j.biomaterials.2011.09.024. PubMed DOI
Wu Y., Qin Y., Wang Z., Wang J., Zhang C., Li C., Kong D. The regeneration og macro-porous electrospun poly(ε-caprolactone) vascular graft during long-term in situ implantation. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106:1618–1627. doi: 10.1002/jbm.b.33967. PubMed DOI
Wang Z., Cui Y., Wang J., Yang X., Wu Y., Wang K., Gao X., Li D., Li Y., Zheng X.L., et al. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials. 2014;35:5700–5710. doi: 10.1016/j.biomaterials.2014.03.078. PubMed DOI
Milleret V., Hefti T., Hall H., Vogel V., Eberli D. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomater. 2012;8:4349–4356. doi: 10.1016/j.actbio.2012.07.032. PubMed DOI
Dokuchaeva A.A., Mochalova A.B., Timchenko T.P., Podolskaya K.S., Pashkovskaya O.A., Karpova E.V., Ivanov I.A., Filatova N.A., Zhuravleva I.Y. In Vivo Evaluation of PCL Vascular Grafts Implanted in Rat Abdominal Aorta. Polymers. 2022;14:3313. doi: 10.3390/polym14163313. PubMed DOI PMC
Horakova J., Mikes P., Saman A., Jencova V., Klapstova A., Svarcova T., Ackermann M., Novotny V., Suchy T., Lukas D. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. 2018;92:132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI
Prosecka E., Rampichova M., Litvinec A., Tonar Zm Kralickova M., Vojtova L., Kochova P., Plencner M., Buzgo M., Mickova A., Jancar J., et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. A. 2015;103:671–682. doi: 10.1002/jbm.a.35216. PubMed DOI
Rampichova M., Chvojka J., Jencova V., Kubikova T., Tonar Z., Erben J., Buzgo M., Dankova J., Litvinec A., Vocetkova K., et al. The combination of nanofibrous and microfibrous materials for enhancement of cell infiltration and in vivo bone tissue formation. Biomed. Mater. 2018;13:025004. doi: 10.1088/1748-605X/aa9717. PubMed DOI
Nottelet B., Pektok E., Mandracchia D., Tille J.C., Walpoth B., Gurny R., Moller M. Factorial design optimization and in vivo feasibility of poly(ε-caprolactone)-micro- and nanofiber-based small diameter vascular grafts. J. Biomed. Mater. Res. A. 2009;89:865–875. doi: 10.1002/jbm.a.32023. PubMed DOI
de Valence S., Tille J.C., Gilibert J.P., Mrowczynski W., Gurny R., Walpoth B.H., Moller M. Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater. 2012;8:3914–3920. doi: 10.1016/j.actbio.2012.06.035. PubMed DOI
De Valence S., Tille J.C., Chaabane C., Gurny R., Bochaton-Piallat M.L., Walpoth B.H., Moller M. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur. J. Pharm. Biopharm. 2013;85:78–86. doi: 10.1016/j.ejpb.2013.06.012. PubMed DOI
Tille J.C., de Valence S., Mandracchia D., Nottelet B., Innocente F., Gurny R., Moller M., Walpoth B.H. Histological assessment of drug-eluting grafts related to implantation site. J. Dev. Biol. 2016;4:11. doi: 10.3390/jdb4010011. PubMed DOI PMC
Yang X., Wei J., Lei D., Liu Y., Wu W. Appropriate density of PCL nano-fiber sheath promoted muscular remodeling of PGS/PCL grafts in arterial circulation. Biomaterials. 2016;88:34–47. doi: 10.1016/j.biomaterials.2016.02.026. PubMed DOI
Pan Y., Zhou X., Wei Y., Zhang Q., Wang T., Zhu M., Li W., Huang R., Liu R., Chen J., et al. Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Sci. Rep. 2017;7:3615. doi: 10.1038/s41598-017-03851-1. PubMed DOI PMC
Wang Z., Wu Y., Wang J., Zhang C., Yan H., Zhu M., Wang K., Li C., Xu Q., Kong D. Effect of Resveratrol on Modulation of Endothelial Cells and Macrophages for Rapid Vascular Regeneration from Electrospun Poly(ε-caprolactone) Scaffolds. ACS Appl. Mater. Interfaces. 2017;9:19541–19551. doi: 10.1021/acsami.6b16573. PubMed DOI
Wang K., Zhang Q., Zhao L., Pan Y., Wang T., Zhi D., Ma S., Zhang P., Zhao T., Zhang S., et al. Functional Modification of Electrospun Poly(ε-caprolactone) Vascular Grafts with the Fusion Protein VEGF-HGFI Enhanced Vascular Regeneration. ACS Appl. Mater. Interfaces. 2017;9:11415–11427. doi: 10.1021/acsami.6b16713. PubMed DOI
Li W., Chen J., Xu P., Zhu M., Wu Y., Wang Z., Zhao T., Cheng Q., Wang K., Fan G., et al. Long-term evaluation of vascular grafts with circumferentially aligned microfibers in a rat abdominal aorta replacement model. J. Appl. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:2596–2604. doi: 10.1002/jbm.b.34076. PubMed DOI
Bancroft J.D., Stevens A. Theory and Practice of Histological Techniques. Churchill Livingstone; New York, NY, USA: 1996.
Kocova J. Overall staining of connective tissue and the muscular layer of vessels. Folia Morphol. 1970;18:293–295. PubMed
Conklin J.L. Staining properties of hyaline cartilage. Am. J. Anat. 1963;112:259–267. doi: 10.1002/aja.1001120209. PubMed DOI
Kiernan J.A. Histological and Histochemical Methods: Theory and Practice. 4th ed. Scion Publishing; Banbury, UK: 2008.
Mouton P.R. Principles and Practices of Unbiased Stereology. An Introduction for Bioscientists. The Johns Hopkins University Press; Baltimore, MD, USA: 2002.
Tonar Z., Tomasek P., Loskot P., Janacek J., Kralickova M., Witter K. Vasa vasorum in the tunica media and tunica adventitia of the porcine aorta. Ann. Anat. 2016;205:22–36. doi: 10.1016/j.aanat.2016.01.008. PubMed DOI
Philimonenko A.A., Janacek J., Hozak P. Statistical evaluation of colocalization patterns in immunogold labeling experiments. J. Struct. Biol. 2000;132:201–210. doi: 10.1006/jsbi.2000.4326. PubMed DOI
Gundersen H.J. Notes on the estimation of the numerical density of arbitrary profiles: The edge effect. J. Microsc. 1977;111:219–223. doi: 10.1111/j.1365-2818.1977.tb00062.x. DOI
Sterio D.C. The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 1984;134:127–136. doi: 10.1111/j.1365-2818.1984.tb02501.x. PubMed DOI
Gundersen H.J. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J. Microsc. 1986;143:3–45. doi: 10.1111/j.1365-2818.1986.tb02764.x. PubMed DOI
Foldager C.B., Nyengaard J.R., Lind M., Spector M. A Stereological Method for the Quantitative Evaluation of Cartilage Repair Tissue. Cartilage. 2014;6:123–132. doi: 10.1177/1947603514560655. PubMed DOI PMC
Brown D.L., Staup M., Swanson C. Stereology of the Peripheral Nervous System. Toxicol. Pathol. 2020;48:37–48. doi: 10.1177/0192623319854746. PubMed DOI
Van Vré E.A., van Beusekom H.M., Vrints C.h.J., Bosmans J.M., Bult H., Van der Giessem W.J. Stereology: A simplified and more time-efficient method than planimetry for the quantitative analysis of vascular structures in different models of intimal thickening. Cardiovasc. Pathol. 2007;16:43–50. doi: 10.1016/j.carpath.2006.08.001. PubMed DOI
Ingram D.A., Caplice N.M., Yoder M.C. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 2005;106:1525–1531. doi: 10.1182/blood-2005-04-1509. PubMed DOI
Yuan Y., Engler A.J., Raredon M.S., Le A., Baevova P., Yoder M.C., Niklason L.E. Epac agonist improves barrier function in iPSC-derived endothelial colony forming cells for whole organ tissue engineering. Biomaterials. 2019;200:25–34. doi: 10.1016/j.biomaterials.2019.02.005. PubMed DOI