Asymmetric Preorganization of Inverted Pair Residues in the Sodium-Calcium Exchanger

. 2016 Feb 15 ; 6 () : 20753. [epub] 20160215

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid26876271

In analogy with many other proteins, Na(+)/Ca(2+) exchangers (NCX) adapt an inverted twofold symmetry of repeated structural elements, while exhibiting a functional asymmetry by stabilizing an outward-facing conformation. Here, structure-based mutant analyses of the Methanococcus jannaschii Na(+)/Ca(2+) exchanger (NCX_Mj) were performed in conjunction with HDX-MS (hydrogen/deuterium exchange mass spectrometry) to identify the structure-dynamic determinants of functional asymmetry. HDX-MS identified hallmark differences in backbone dynamics at ion-coordinating residues of apo-NCX_Mj, whereas Na(+)or Ca(2+) binding to the respective sites induced relatively small, but specific, changes in backbone dynamics. Mutant analysis identified ion-coordinating residues affecting the catalytic capacity (kcat/Km), but not the stability of the outward-facing conformation. In contrast, distinct "noncatalytic" residues (adjacent to the ion-coordinating residues) control the stability of the outward-facing conformation, but not the catalytic capacity. The helix-breaking signature sequences (GTSLPE) on the α1 and α2 repeats (at the ion-binding core) differ in their folding/unfolding dynamics, while providing asymmetric contributions to transport activities. The present data strongly support the idea that asymmetric preorganization of the ligand-free ion-pocket predefines catalytic reorganization of ion-bound residues, where secondary interactions with adjacent residues couple the alternating access. These findings provide a structure-dynamic basis for ion-coupled alternating access in NCX and similar proteins.

Zobrazit více v PubMed

Forrest L. R. Structural biology. (Pseudo-)symmetrical transport. Science 339, 399–401 (2013). PubMed

Forrest L. R. Structural Symmetry in Membrane Proteins. Annu. Rev. Biophys. 44, 311–337 (2015). PubMed PMC

Keller R., Ziegler C. & Schneider D. When two turn into one: evolution of membrane transporters from half modules. Biol. Chem. 395, 1379–1388 (2014). PubMed

Boudker O. & Verdon G. Structural perspectives on secondary active transporters. Trends Pharmacol. Sci. 31, 418–426 (2010). PubMed PMC

Philipson K. D. & Nicoll D. A. Sodium-calcium exchange: a molecular perspective. Ann. Rev. Physiol. 62, 111–133 (2000). PubMed

Blaustein M. P. & Lederer W. J. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999). PubMed

Khananshvili D. The SLC8 gene family of sodium-calcium exchangers (NCX)-structure, function, and regulation in health and disease. Mol. Aspects Med. 34, 220–235 (2013). PubMed

Khananshvili D. Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions. Pflugers Arch. EJP. 466, 43–60 (2014). PubMed

Reeves J. P. & Hale C. C. The stoichiometry of the cardiac sodium-calcium exchange system. J. Biol. Chem. 259, 7733–7739 (1984). PubMed

Khananshvili D. Distinction between the two basic mechanisms of cation transport in the cardiac Na+ -Ca2+ exchange system. Biochemistry 29, 2437–2442 (1990). PubMed

Jardetzky O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966). PubMed

Forrest L. R., Kramer R. & Ziegler C. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 1807, 167–188 (2011). PubMed

Baazov D., Wang X. & Khananshvili D. Time-resolved monitoring of electrogenic Na+ -Ca2+ exchange in the isolated cardiac sarcolemma vesicles by using a rapid-response fluorescent probe. Biochemistry 38, 1435–1445 (1999). PubMed

Niggli E. & Lederer W. J. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature 349, 621–624 (1991). PubMed

Hilgemann D. W., Nicoll D. A. & Philipson K. D. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature 352, 715–718 (1991). PubMed

Almagor L. et al. Functional asymmetry of bidirectional Ca2+ -movements in an archaeal sodium-calcium exchanger (NCX_Mj). Cell calcium 56, 276–284 (2014). PubMed

Khananshvili D., Weil-Maslansky E. & Baazov D. Kinetics and mechanism: modulation of ion transport in the cardiac sarcolemma sodium-calcium exchanger by protons, monovalent, ions, and temperature. Ann. N. Y. Acad. Sci. 779, 217–235 (1996). PubMed

Liao J. et al. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335, 686–690 (2012). PubMed

Waight A. B. et al. Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499, 107–110 (2013). PubMed PMC

Nishizawa T. et al. Structural basis for the counter-transport mechanism of a H+/Ca2+ exchanger. Science 341, 168–172 (2013). PubMed

Wu M. et al. Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation. Proc. Natl. Acad. Sci. USA. 110, 11367–11372 (2013). PubMed PMC

Marinelli F. et al. Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation. Proc. Natl. Acad. Sci. USA. 111, E5354–5362 (2014). PubMed PMC

Giladi M., Lee S. Y., Hiller R., Chung K. Y. & Khananshvili D. Structure-dynamic determinants governing a mode of regulatory response and propagation of allosteric signal in splice variants of Na+/Ca2+ exchange (NCX) proteins. Biochem. J. 465, 489–501 (2015). PubMed

Konermann L., Pan J. & Liu Y. H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 (2011). PubMed

Mehmood S., Domene C., Forest E. & Jault J. M. Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations. Proc. Natl. Acad. Sci. USA. 109, 10832–10836 (2012). PubMed PMC

Rey M. et al. Conformational dynamics of the bovine mitochondrial ADP/ATP carrier isoform 1 revealed by hydrogen/deuterium exchange coupled to mass spectrometry. J. Biol. Chem. 285, 34981–34990 (2010). PubMed PMC

Chalmers M. J., Busby S. A., Pascal B. D., West G. M. & Griffin P. R. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Rev. Proteomics 8, 43–59 (2011). PubMed PMC

Weis D. D., Wales T. E., Engen J. R., Hotchko M. & Ten Eyck L. F. Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J. Am. Soc. Mass Spectrom. 17, 1498–1509 (2006). PubMed

Demmers J. A., Haverkamp J., Heck A. J., Koeppe R. E. 2nd & Killian J. A. Electrospray ionization mass spectrometry as a tool to analyze hydrogen/deuterium exchange kinetics of transmembrane peptides in lipid bilayers. Proc. Natl. Acad. Sci. USA. 97, 3189–3194 (2000). PubMed PMC

John S. A., Liao J., Jiang Y. & Ottolia M. The cardiac Na+ -Ca2+ exchanger has two cytoplasmic ion permeation pathways. Proc. Natl. Acad. Sci. USA. 110, 7500–7505 (2013). PubMed PMC

Warshel A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006). PubMed

Kamerlin S. C. & Warshel A. At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2010). PubMed PMC

Giladi M., Hiller R., Hirsch J. A. & Khananshvili D. Population shift underlies Ca2+ -induced regulatory transitions in the sodium-calcium exchanger (NCX). J. Biol. Chem. 288, 23141–23149 (2013). PubMed PMC

Kavan D. & Man P. MSTools-Web based application for visualization and presentation of HDX-MS data. Int. J. Mass Spectrom. 302, 53–58 (2011).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...