Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/L01386X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
17506
Cancer Research UK - United Kingdom
103139/Z/13/Z
Wellcome Trust - United Kingdom
10313
Wellcome Trust - United Kingdom
340551
European Research Council - International
108504
Wellcome Trust - United Kingdom
092076
Wellcome Trust - United Kingdom
103139
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
PubMed
29111974
PubMed Central
PMC5690282
DOI
10.7554/elife.30395
PII: 30395
Knihovny.cz E-zdroje
- Klíčová slova
- S. cerevisiae, TBP associated factors, TFIID, biochemistry, biophysics, core promoter DNA, gene regulation, histone fold domain, human, structural biology, transcription factors,
- MeSH
- DNA metabolismus MeSH
- faktory asociované s proteinem vázajícím TATA box chemie metabolismus MeSH
- histonacetyltransferasy metabolismus MeSH
- hmotnostní spektrometrie MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- mapování interakce mezi proteiny MeSH
- promotorové oblasti (genetika) MeSH
- protein vázající TATA box chemie metabolismus MeSH
- transkripční faktor TFIID chemie metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- faktory asociované s proteinem vázajícím TATA box MeSH
- histonacetyltransferasy MeSH
- protein vázající TATA box MeSH
- TAF11 protein, human MeSH Prohlížeč
- TAF13 protein, human MeSH Prohlížeč
- TATA-binding protein associated factor 250 kDa MeSH Prohlížeč
- TBP protein, human MeSH Prohlížeč
- transkripční faktor TFIID MeSH
General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13, which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.
BioCeV Faculty of Science Charles University Prague Czech Republic
Centre National de la Recherche Scientifique Illkirch France
Chair of Bioanalytics Institute of Biotechnology Technische Universität Berlin Berlin Germany
Department of Biochemistry University of Cambridge Cambridge United Kingdom
European Molecular Biology Laboratory Grenoble France
European Molecular Biology Laboratory Heidelberg Germany
Institut de Biologie Structurale IBS Grenoble France
Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMC Illkirch France
Institut National de la Santé et de la Recherche Médicale Illkirch France
Institute of Microbiology The Czech Academy of Sciences Vestec Czech Republic
Physical and Theoretical Chemistry Laboratory Oxford United Kingdom
Université de Strasbourg Illkirch France
Wellcome Trust Centre for Cell Biology University of Edinburgh Edinburgh United Kingdom
Zobrazit více v PubMed
Albright SR, Tjian R. TAFs revisited: more data reveal new twists and confirm old ideas. Gene. 2000;242:1–13. doi: 10.1016/S0378-1119(99)00495-3. PubMed DOI
Anandapadamanaban M, Andresen C, Helander S, Ohyama Y, Siponen MI, Lundström P, Kokubo T, Ikura M, Moche M, Sunnerhagen M. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation. Nature Structural & Molecular Biology. 2013;20:1008–1014. doi: 10.1038/nsmb.2611. PubMed DOI PMC
Auble DT, Hahn S. An ATP-dependent inhibitor of TBP binding to DNA. Genes & Development. 1993;7:844–856. doi: 10.1101/gad.7.5.844. PubMed DOI
Berger I, Fitzgerald DJ, Richmond TJ. Baculovirus expression system for heterologous multiprotein complexes. Nature Biotechnology. 2004;22:1583–1587. doi: 10.1038/nbt1036. PubMed DOI
Bieniossek C, Papai G, Schaffitzel C, Garzoni F, Chaillet M, Scheer E, Papadopoulos P, Tora L, Schultz P, Berger I. The architecture of human general transcription factor TFIID core complex. Nature. 2013;493:699–702. doi: 10.1038/nature11791. PubMed DOI
Birck C, Poch O, Romier C, Ruff M, Mengus G, Lavigne AC, Davidson I, Moras D. Human TAF(II)28 and TAF(II)18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell. 1998;94:239–249. doi: 10.1016/S0092-8674(00)81423-3. PubMed DOI
Bleichenbacher M, Tan S, Richmond TJ. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. Journal of Molecular Biology. 2003;332:783–793. doi: 10.1016/S0022-2836(03)00887-8. PubMed DOI
Buratowski S, Sharp PA. Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit. Molecular and Cellular Biology. 1990;10:5562–5564. doi: 10.1128/MCB.10.10.5562. PubMed DOI PMC
Burley SK, Roeder RG. TATA box mimicry by TFIID: autoinhibition of pol II transcription. Cell. 1998;94:551–553. doi: 10.1016/S0092-8674(00)81596-2. PubMed DOI
Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, Cramer P, Rappsilber J. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. The EMBO Journal. 2010;29:717–726. doi: 10.1038/emboj.2009.401. PubMed DOI PMC
Cianfrocco MA, Kassavetis GA, Grob P, Fang J, Juven-Gershon T, Kadonaga JT, Nogales E. Human TFIID binds to core promoter DNA in a reorganized structural state. Cell. 2013;152:120–131. doi: 10.1016/j.cell.2012.12.005. PubMed DOI PMC
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
de Vries SJ, van Dijk M, Bonvin AM. The HADDOCK web server for data-driven biomolecular docking. Nature Protocols. 2010;5:883–897. doi: 10.1038/nprot.2010.32. PubMed DOI
Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research. 1983;11:1475–1489. doi: 10.1093/nar/11.5.1475. PubMed DOI PMC
Fitzgerald DJ, Berger P, Schaffitzel C, Yamada K, Richmond TJ, Berger I. Protein complex expression by using multigene baculoviral vectors. Nature Methods. 2006;3:1021–1032. doi: 10.1038/nmeth983. PubMed DOI
Gangloff YG, Romier C, Thuault S, Werten S, Davidson I. The histone fold is a key structural motif of transcription factor TFIID. Trends in Biochemical Sciences. 2001a;26:250–257. doi: 10.1016/S0968-0004(00)01741-2. PubMed DOI
Gangloff YG, Sanders SL, Romier C, Kirschner D, Weil PA, Tora L, Davidson I. Histone folds mediate selective heterodimerization of yeast TAF(II)25 with TFIID components yTAF(II)47 and yTAF(II)65 and with SAGA component ySPT7. Molecular and Cellular Biology. 2001b;21:1841–1853. doi: 10.1128/MCB.21.5.1841-1853.2001. PubMed DOI PMC
Gegonne A, Tai X, Zhang J, Wu G, Zhu J, Yoshimoto A, Hanson J, Cultraro C, Chen QR, Guinter T, Yang Z, Hathcock K, Singer A, Rodriguez-Canales J, Tessarollo L, Mackem S, Meerzaman D, Buetow K, Singer DS. The general transcription factor TAF7 is essential for embryonic development but not essential for the survival or differentiation of mature T cells. Molecular and Cellular Biology. 2012;32:1984–1997. doi: 10.1128/MCB.06305-11. PubMed DOI PMC
Giladi M, Almagor L, van Dijk L, Hiller R, Man P, Forest E, Khananshvili D. Asymmetric Preorganization of Inverted Pair Residues in the Sodium-Calcium Exchanger. Scientific Reports. 2016;6:20753. doi: 10.1038/srep20753. PubMed DOI PMC
Goodrich JA, Tjian R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nature Reviews Genetics. 2010;11:549–558. doi: 10.1038/nrg2847. PubMed DOI PMC
Gupta K, Sari-Ak D, Haffke M, Trowitzsch S, Berger I. Zooming in on Transcription Preinitiation. Journal of Molecular Biology. 2016;428:2581–2591. doi: 10.1016/j.jmb.2016.04.003. PubMed DOI PMC
Høiby T, Zhou H, Mitsiou DJ, Stunnenberg HG. A facelift for the general transcription factor TFIIA. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 2007;1769:429–436. doi: 10.1016/j.bbaexp.2007.04.008. PubMed DOI
Haffke M, Viola C, Nie Y, Berger I. Tandem recombineering by SLIC cloning and Cre-LoxP fusion to generate multigene expression constructs for protein complex research. Methods in Molecular Biology. 2013;1073:131–140. doi: 10.1007/978-1-62703-625-2_11. PubMed DOI
Hampsey M, Reinberg D. RNA polymerase II as a control panel for multiple coactivator complexes. Current Opinion in Genetics & Development. 1999;9:132–139. doi: 10.1016/S0959-437X(99)80020-3. PubMed DOI
Hernández H, Robinson CV. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature Protocols. 2007;2:715–726. doi: 10.1038/nprot.2007.73. PubMed DOI
Hsu JY, Juven-Gershon T, Marr MT, Wright KJ, Tjian R, Kadonaga JT. TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription. Genes & Development. 2008;22:2353–2358. doi: 10.1101/gad.1681808. PubMed DOI PMC
Incardona MF, Bourenkov GP, Levik K, Pieritz RA, Popov AN, Svensson O. EDNA: a framework for plugin-based applications applied to X-ray experiment online data analysis. Journal of Synchrotron Radiation. 2009;16:872–879. doi: 10.1107/S0909049509036681. PubMed DOI
Ishihama Y, Rappsilber J, Andersen JS, Mann M. Microcolumns with self-assembled particle frits for proteomics. Journal of Chromatography A. 2002;979:233–239. doi: 10.1016/S0021-9673(02)01402-4. PubMed DOI
Kabsch W. XDS. Acta Crystallographica. Section D, Biological Crystallography. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Kamada K, Shu F, Chen H, Malik S, Stelzer G, Roeder RG, Meisterernst M, Burley SK. Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Cell. 2001;106:71–81. doi: 10.1016/S0092-8674(01)00417-2. PubMed DOI
Kessner D, Chambers M, Burke R, Agus D, Mallick P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics. 2008;24:2534–2536. doi: 10.1093/bioinformatics/btn323. PubMed DOI PMC
Kim JL, Nikolov DB, Burley SK. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature. 1993;365:520–527. doi: 10.1038/365520a0. PubMed DOI
Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B. A high-resolution map of active promoters in the human genome. Nature. 2005;436:876–880. doi: 10.1038/nature03877. PubMed DOI PMC
Koehler C, Sauter PF, Wawryszyn M, Girona GE, Gupta K, Landry JJ, Fritz MH, Radic K, Hoffmann JE, Chen ZA, Zou J, Tan PS, Galik B, Junttila S, Stolt-Bergner P, Pruneri G, Gyenesei A, Schultz C, Biskup MB, Besir H, Benes V, Rappsilber J, Jechlinger M, Korbel JO, Berger I, Braese S, Lemke EA. Genetic code expansion for multiprotein complex engineering. Nature Methods. 2016;13:997–1000. doi: 10.1038/nmeth.4032. PubMed DOI
Koster MJ, Snel B, Timmers HT. Genesis of chromatin and transcription dynamics in the origin of species. Cell. 2015;161:724–736. doi: 10.1016/j.cell.2015.04.033. PubMed DOI
Kraemer SM, Ranallo RT, Ogg RC, Stargell LA. TFIIA interacts with TFIID via association with TATA-binding protein and TAF40. Molecular and Cellular Biology. 2001;21:1737–1746. doi: 10.1128/MCB.21.5.1737-1746.2001. PubMed DOI PMC
Lavigne AC, Gangloff YG, Carré L, Mengus G, Birck C, Poch O, Romier C, Moras D, Davidson I. Synergistic transcriptional activation by TATA-binding protein and hTAFII28 requires specific amino acids of the hTAFII28 histone fold. Molecular and Cellular Biology. 1999;19:5050–5060. doi: 10.1128/MCB.19.7.5050. PubMed DOI PMC
Lemaire M, Collart MA. The TATA-binding protein-associated factor yTafII19p functionally interacts with components of the global transcriptional regulator Ccr4-Not complex and physically interacts with the Not5 subunit. The Journal of Biological Chemistry. 2000;275:26925–26934. doi: 10.1074/jbc.M002701200. PubMed DOI
Leurent C, Sanders S, Ruhlmann C, Mallouh V, Weil PA, Kirschner DB, Tora L, Schultz P. Mapping histone fold TAFs within yeast TFIID. The EMBO Journal. 2002;21:3424–3433. doi: 10.1093/emboj/cdf342. PubMed DOI PMC
Li MZ, Elledge SJ. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature methods. 2007;4:251–256. doi: 10.1038/nmeth1010. PubMed DOI
Liu D, Ishima R, Tong KI, Bagby S, Kokubo T, Muhandiram DR, Kay LE, Nakatani Y, Ikura M. Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell. 1998;94:573–583. doi: 10.1016/S0092-8674(00)81599-8. PubMed DOI
Louder RK, He Y, López-Blanco JR, Fang J, Chacón P, Nogales E. Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature. 2016;531:604–609. doi: 10.1038/nature17394. PubMed DOI PMC
Maiolica A, Cittaro D, Borsotti D, Sennels L, Ciferri C, Tarricone C, Musacchio A, Rappsilber J. Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Molecular & Cellular Proteomics. 2007;6:2200–2211. doi: 10.1074/mcp.M700274-MCP200. PubMed DOI
Mal TK, Masutomi Y, Zheng L, Nakata Y, Ohta H, Nakatani Y, Kokubo T, Ikura M. Structural and functional characterization on the interaction of yeast TFIID subunit TAF1 with TATA-binding protein. Journal of Molecular Biology. 2004;339:681–693. doi: 10.1016/j.jmb.2004.04.020. PubMed DOI
Maston GA, Zhu LJ, Chamberlain L, Lin L, Fang M, Green MR. Non-canonical TAF complexes regulate active promoters in human embryonic stem cells. eLife. 2012;1:e00068. doi: 10.7554/eLife.00068. PubMed DOI PMC
Matangkasombut O, Auty R, Buratowski S. Structure and function of the TFIID complex. Advances in Protein Chemistry. 2004;67:67–92. doi: 10.1016/S0065-3233(04)67003-3. PubMed DOI
McCoy AJ. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallographica Section D Biological Crystallography. 2007;63:32–41. doi: 10.1107/S0907444906045975. PubMed DOI PMC
Mohan WS, Scheer E, Wendling O, Metzger D, Tora L. TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Molecular and Cellular Biology. 2003;23:4307–4318. doi: 10.1128/MCB.23.12.4307-4318.2003. PubMed DOI PMC
Müller F, Tora L. Chromatin and DNA sequences in defining promoters for transcription initiation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2014;1839:118–128. doi: 10.1016/j.bbagrm.2013.11.003. PubMed DOI
Müller F, Zaucker A, Tora L. Developmental regulation of transcription initiation: more than just changing the actors. Current Opinion in Genetics & Development. 2010;20:533–540. doi: 10.1016/j.gde.2010.06.004. PubMed DOI
Nikolov DB, Chen H, Halay ED, Hoffman A, Roeder RG, Burley SK. Crystal structure of a human TATA box-binding protein/TATA element complex. PNAS. 1996;93:4862–4867. doi: 10.1073/pnas.93.10.4862. PubMed DOI PMC
Nikolov DB, Hu SH, Lin J, Gasch A, Hoffmann A, Horikoshi M, Chua NH, Roeder RG, Burley SK. Crystal structure of TFIID TATA-box binding protein. Nature. 1992;360:40–46. doi: 10.1038/360040a0. PubMed DOI
Papai G, Tripathi MK, Ruhlmann C, Layer JH, Weil PA, Schultz P. TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation. Nature. 2010;465:956–960. doi: 10.1038/nature09080. PubMed DOI PMC
Pereira LA, Klejman MP, Timmers HT. Roles for BTAF1 and Mot1p in dynamics of TATA-binding protein and regulation of RNA polymerase II transcription. Gene. 2003;315:1–13. doi: 10.1016/S0378-1119(03)00714-5. PubMed DOI
Pernot P, Round A, Barrett R, De Maria Antolinos A, Gobbo A, Gordon E, Huet J, Kieffer J, Lentini M, Mattenet M, Morawe C, Mueller-Dieckmann C, Ohlsson S, Schmid W, Surr J, Theveneau P, Zerrad L, McSweeney S. Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution. Journal of Synchrotron Radiation. 2013;20:660–664. doi: 10.1107/S0909049513010431. PubMed DOI PMC
Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HD, Konarev PV, Svergun DI. New developments in the ATSAS program package for small-angle scattering data analysis. Journal of Applied Crystallography. 2012;45:342–350. doi: 10.1107/S0021889812007662. PubMed DOI PMC
Rajabi K, Ashcroft AE, Radford SE. Mass spectrometric methods to analyze the structural organization of macromolecular complexes. Methods. 2015;89:13–21. doi: 10.1016/j.ymeth.2015.03.004. PubMed DOI
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Robinson MM, Yatherajam G, Ranallo RT, Bric A, Paule MR, Stargell LA. Mapping and functional characterization of the TAF11 interaction with TFIIA. Molecular and Cellular Biology. 2005;25:945–957. doi: 10.1128/MCB.25.3.945-957.2005. PubMed DOI PMC
Sardiu ME, Cai Y, Jin J, Swanson SK, Conaway RC, Conaway JW, Florens L, Washburn MP. Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. PNAS. 2008;105:1454–1459. doi: 10.1073/pnas.0706983105. PubMed DOI PMC
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophysical Journal. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Shen WC, Bhaumik SR, Causton HC, Simon I, Zhu X, Jennings EG, Wang TH, Young RA, Green MR. Systematic analysis of essential yeast TAFs in genome-wide transcription and preinitiation complex assembly. The EMBO Journal. 2003;22:3395–3402. doi: 10.1093/emboj/cdg336. PubMed DOI PMC
Thomas MC, Chiang CM. The general transcription machinery and general cofactors. Critical Reviews in Biochemistry and Molecular Biology. 2006;41:105–178. doi: 10.1080/10409230600648736. PubMed DOI
Tora L, Timmers HT. The TATA box regulates TATA-binding protein (TBP) dynamics in vivo. Trends in Biochemical Sciences. 2010;35:309–314. doi: 10.1016/j.tibs.2010.01.007. PubMed DOI
Trowitzsch S, Viola C, Scheer E, Conic S, Chavant V, Fournier M, Papai G, Ebong IO, Schaffitzel C, Zou J, Haffke M, Rappsilber J, Robinson CV, Schultz P, Tora L, Berger I. Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules. Nature Communications. 2015;6:6011. doi: 10.1038/ncomms7011. PubMed DOI PMC
Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M, Timmers HT. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell. 2007;131:58–69. doi: 10.1016/j.cell.2007.08.016. PubMed DOI
Verrijzer CP, Chen JL, Yokomori K, Tjian R. Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II. Cell. 1995;81:1115–1125. doi: 10.1016/S0092-8674(05)80016-9. PubMed DOI
Warfield L, Ramachandran S, Baptista T, Devys D, Tora L, Hahn S. Transcription of nearly all yeast RNA polymerase II-transcribed genes is dependent on transcription factor TFIID. Molecular Cell. 2017;68:118–129. doi: 10.1016/j.molcel.2017.08.014. PubMed DOI PMC
Webb B, Sali A. Current Protocols in Bioinformatics. John Wiley & Sons, Inc; 2014. Comparative protein structure modeling using MODELLER. PubMed
Werten S, Mitschler A, Romier C, Gangloff YG, Thuault S, Davidson I, Moras D. Crystal structure of a subcomplex of human transcription factor TFIID formed by TATA binding protein-associated factors hTAF4 (hTAF(II)135) and hTAF12 (hTAF(II)20) Journal of Biological Chemistry. 2002;277:45502–45509. doi: 10.1074/jbc.M206587200. PubMed DOI
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS. Overview of the CCP4 suite and current developments. Acta Crystallographica Section D Biological Crystallography. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
Wollmann P, Cui S, Viswanathan R, Berninghausen O, Wells MN, Moldt M, Witte G, Butryn A, Wendler P, Beckmann R, Auble DT, Hopfner KP. Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Nature. 2011;475:403–407. doi: 10.1038/nature10215. PubMed DOI PMC
Wright KJ, Marr MT, Tjian R. TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter. PNAS. 2006;103:12347–12352. doi: 10.1073/pnas.0605499103. PubMed DOI PMC
Xie J, Collart M, Lemaire M, Stelzer G, Meisterernst M. A single point mutation in TFIIA suppresses NC2 requirement in vivo. The EMBO Journal. 2000;19:672–682. doi: 10.1093/emboj/19.4.672. PubMed DOI PMC
Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A, Chait BT, Roeder RG, Nakatani Y, Burley SK. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature. 1996;380:316–322. doi: 10.1038/380316a0. PubMed DOI
Zybailov BL, Florens L, Washburn MP. Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Molecular BioSystems. 2007;3:354–360. doi: 10.1039/b701483j. PubMed DOI