Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
16877800
DOI
10.1007/bf03194627
PII: 343
Knihovny.cz E-zdroje
- MeSH
- chov metody MeSH
- DNA fingerprinting metody MeSH
- DNA primery MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- hrách setý genetika MeSH
- polymorfismus genetický * MeSH
- retroelementy genetika MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- DNA primery MeSH
- retroelementy MeSH
Fast and efficient DNA fingerprinting of crop cultivars and individuals is frequently used in both theoretical population genetics and in practical breeding. Numerous DNA marker technologies exist and the ratio of speed, cost and accuracy are of importance. Therefore even in species where highly accurate and polymorphic marker systems are available, such as microsatellite SSR (simple sequence repeats), also alternative methods may be of interest. Thanks to their high abundance and ubiquity, temporary mobile retrotransposable elements come into recent focus. Their properties, such as genome wide distribution and well-defined origin of individual insertions by descent, predetermine them for use as molecular markers. In this study, several Ty3-gypsy type retrotransposons have been developed and adopted for the inter-retrotransposon amplified polymorphism (IRAP) method, which is suitable for fast and efficient pea cultivar fingerprinting. The method can easily distinguish even between genetically closely related pea cultivars and provide high polymorphic information content (PIC) in a single PCR analysis.
Zobrazit více v PubMed
Plant Mol Biol. 2002 Mar-Apr;48(5-6):767-90 PubMed
Nucleic Acids Res. 2003 Oct 1;31(19):e115 PubMed
Nucleic Acids Res. 1995 Nov 11;23(21):4407-14 PubMed
Theor Appl Genet. 2005 Oct;111(6):1022-31 PubMed
Plant Mol Biol. 2003 Oct;53(3):399-410 PubMed
Nucleic Acids Res. 1990 Nov 25;18(22):6531-5 PubMed
Mol Biol Evol. 2002 Aug;19(8):1218-27 PubMed
Plant Mol Biol. 1997 Sep;35(1-2):89-99 PubMed
Mol Genet Genomics. 2005 Mar;273(1):43-53 PubMed
Mol Gen Genet. 2000 Jul;263(6):898-907 PubMed
Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73 PubMed
Plant J. 1998 Dec;16(5):643-50 PubMed
Methods Mol Biol. 2004;260:145-73 PubMed
Genetics. 2005 Oct;171(2):741-52 PubMed
Mol Gen Genet. 2000 Oct;264(3):325-34 PubMed
Genome. 2001 Aug;44(4):716-28 PubMed
Genome. 2005 Oct;48(5):831-9 PubMed
Plant J. 1993 Jan;3(1):175-82 PubMed
Bioessays. 2000 Feb;22(2):148-60 PubMed
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7 PubMed
Plant Mol Biol. 1998 May;37(2):363-75 PubMed
Science. 2004 Mar 12;303(5664):1626-32 PubMed
Genome. 2005 Apr;48(2):257-72 PubMed
Mol Gen Genet. 1998 Oct;260(1):9-19 PubMed
Theor Appl Genet. 2004 May;108(7):1309-21 PubMed
Genomics. 1994 Mar 15;20(2):176-83 PubMed
Annu Rev Genet. 1999;33:479-532 PubMed
Nat Rev Genet. 2002 May;3(5):370-9 PubMed
Mol Gen Genet. 1997 Feb 27;253(6):687-94 PubMed
Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers