Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21293839

Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70-100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics.

Zobrazit více v PubMed

Nat Protoc. 2006;1(5):2478-84 PubMed

Genetics. 1978 Jul;89(3):583-90 PubMed

Theor Appl Genet. 2005 Dec;112(1):58-65 PubMed

Nature. 2009 Jan 29;457(7229):551-6 PubMed

Plant J. 1998 Nov;16(3):365-9 PubMed

Methods Mol Biol. 2004;260:145-73 PubMed

BMC Bioinformatics. 2008 Dec 16;9:539 PubMed

Genome. 2008 Aug;51(8):560-9 PubMed

Evol Bioinform Online. 2007 Feb 23;1:47-50 PubMed

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed

Genetics. 2000 Jun;155(2):945-59 PubMed

J Appl Genet. 2006;47(3):221-30 PubMed

Theor Appl Genet. 2009 Oct;119(6):1027-38 PubMed

Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed

Nucleic Acids Res. 1981 Mar 25;9(6):1301-9 PubMed

Nutrition. 1999 May;15(5):392-401 PubMed

Theor Appl Genet. 2009 Jun;119(1):53-63 PubMed

Genetics. 1991 Jul;128(3):619-30 PubMed

Mol Biotechnol. 2004 Mar;26(3):207-14 PubMed

Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321-3 PubMed

Mob DNA. 2010 Feb 01;1(1):6 PubMed

Theor Appl Genet. 2009 Jul;119(2):199-212 PubMed

Nutr Cancer. 1999;33(2):188-95 PubMed

Nature. 2010 Feb 11;463(7282):763-8 PubMed

Genomics. 2008 Jan;91(1):1-11 PubMed

J Appl Genet. 2008;49(2):155-66 PubMed

New Phytol. 2005 Jul;167(1):171-80 PubMed

Ann Bot. 2005 Jan;95(1):201-6 PubMed

Genome Res. 2000 Jul;10(7):908-15 PubMed

Science. 1997 Aug 22;277(5329):1063-6 PubMed

Theor Appl Genet. 2006 Apr;112(6):999-1008 PubMed

Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5833-8 PubMed

Genetica. 2009 Mar;135(2):245-55 PubMed

Genetics. 1992 Jun;131(2):479-91 PubMed

Mol Ecol. 2006 Sep;15(10):2833-43 PubMed

New Phytol. 2010 Apr;186(1):135-47 PubMed

Science. 2009 Sep 11;325(5946):1359 PubMed

Theor Appl Genet. 2010 Nov;121(8):1419-30 PubMed

BMC Evol Biol. 2010 Feb 15;10:44 PubMed

Theor Appl Genet. 2008 Aug;117(3):413-24 PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...