Mitochondrial adaptations throughout the Trypanosoma brucei life cycle
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
20-14409S
Grantová Agentura České Republiky
22-34480S
Grantová Agentura České Republiky
OPVVV16_019/0000759
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
35325490
DOI
10.1111/jeu.12911
Knihovny.cz E-zdroje
- Klíčová slova
- Trypanosoma, differentiation, metabolism, mitochondria, signaling,
- MeSH
- fyziologická adaptace MeSH
- mitochondrie metabolismus MeSH
- savci MeSH
- stadia vývoje MeSH
- Trypanosoma brucei brucei * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The unicellular parasite Trypanosoma brucei has a digenetic life cycle that alternates between a mammalian host and an insect vector. During programmed development, this extracellular parasite encounters strikingly different environments that determine its energy metabolism. Functioning as a bioenergetic, biosynthetic, and signaling center, the single mitochondrion of T. brucei is drastically remodeled to support the dynamic cellular demands of the parasite. This manuscript will provide an up-to-date overview of how the distinct T. brucei developmental stages differ in their mitochondrial metabolic and bioenergetic pathways, with a focus on the electron transport chain, proline oxidation, TCA cycle, acetate production, and ATP generation. Although mitochondrial metabolic rewiring has always been simply viewed as a consequence of the differentiation process, the possibility that certain mitochondrial activities reinforce parasite differentiation will be explored.
Zobrazit více v PubMed
Acestor, N., Zikova, A., Dalley, R.A., Anupama, A., Panigrahi, A.K. & Stuart, K.D. (2011) Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Molecular & Cellular Proteomics: MCP, 10(M110), 006908.
Albert, M.A., Haanstra, J.R., Hannaert, V., Van Roy, J., Opperdoes, F.R., Bakker, B.M. et al. (2005) Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. Journal of Biological Chemistry, 280, 28306-28315.
Alkhaldi, A.A., Martinek, J., Panicucci, B., Dardonville, C., Zikova, A. & de Koning, H.P. (2016) Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei. International Journal for Parasitology: Drugs and Drug Resistance, 6, 23-34.
Allmann, S., Wargnies, M., Plazolles, N., Cahoreau, E., Biran, M., Morand, P. et al. (2021) Glycerol suppresses glucose consumption in trypanosomes through metabolic contest. PLoS Biology, 19, e3001359.
Aphasizheva, I., Alfonzo, J., Carnes, J., Cestari, I., Cruz-Reyes, J., Goringer, H.U. et al. (2020) Lexis and grammar of mitochondrial RNA processing in Trypanosomes. Trends in Parasitology, 36, 337-355.
Assefa, S. & Shibeshi, W. (2018) Drug resistance in African animal trypanosomes: a review. African Journal of Microbiology Research, 12, 380-386.
Awuah-Mensah, G., McDonald, J., Steketee, P.C., Autheman, D., Whipple, S., D'Archivio, S. et al. (2021) Reliable, scalable functional genetics in bloodstream-form Trypanosoma congolense in vitro and in vivo. PLoS Path, 17, e1009224.
Beleznai, Z. & Jancsik, V. (1989) Role of Cardiolipin in the functioning of mitochondrial L-glycerol-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications, 159, 132-139.
Bienen, E.J., Maturi, R.K., Pollakis, G. & Clarkson, A.B. Jr (1993) Non-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei. European Journal of Biochemistry, 216, 75-80.
Bienen, E.J., Saric, M., Pollakis, G., Grady, R.W. & Clarkson, A.B. Jr (1991) Mitochondrial development in Trypanosoma brucei brucei transitional bloodstream forms. Molecular and Biochemical Parasitology, 45, 185-192.
Bily, T., Sheikh, S., Mallet, A., Bastin, P., Perez-Morga, D., Lukes, J. et al. (2021) Ultrastructural changes of the mitochondrion during the life cycle of Trypanosoma brucei. Journal of Eukaryotic Microbiology, 68, e12846.
Bochud-Allemann, N. & Schneider, A. (2002) Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei. Journal of Biological Chemistry, 277, 32849-32854.
Brand, M.D. (2020) Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Critical Reviews in Biochemistry and Molecular Biology, 55, 592-661.
Bringaud, F., Barrett, M.P. & Zilberstein, D. (2012) Multiple roles of proline transport and metabolism in trypanosomatids. Frontiers in Bioscience-Landmark, 17, 349-374.
Bringaud, F., Ebikeme, C. & Boshart, M. (2010) Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology, 137, 1315-1331.
Bringaud, F., Plazolles, N., Pineda, E., Asencio, C., Villafraz, O., Millerioux, Y. et al. (2021) Glycerol, a possible new player in the biology of trypanosomes. PLoS Path, 17, e1010035.
Campanella, M., Parker, N., Tan, C.H., Hall, A.M. & Duchen, M.R. (2009) IF(1): setting the pace of the F(1)F(o)-ATP synthase. Trends in Biochemical Sciences, 34, 343-350.
Carruthers, L.V., Munday, J.C., Ebiloma, G.U., Steketee, P., Jayaraman, S., Campagnaro, G.D. et al. (2021) Diminazene resistance in Trypanosoma congolense is not caused by reduced transport capacity but associated with reduced mitochondrial membrane potential. Molecular Microbiology, 116, 564-588.
Chandel, N.S. (2014) Mitochondria as signaling organelles. BMC Biology, 12, 34.
Chaudhuri, M., Ajayi, W. & Hill, G.C. (1998) Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. Molecular and Biochemical Parasitology, 95, 53-68.
Chaudhuri, M., Ott, R.D. & Hill, G.C. (2006) Trypanosome alternative oxidase: from molecule to function. Trends in Parasitology, 22, 484-491.
Chinopoulos, C. (2011) Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Letters, 585, 1255-1259.
Chinopoulos, C. & Adam-Vizi, V. (2010) Mitochondria as ATP consumers in cellular pathology. Biochimica Et Biophysica Acta, 1802, 221-227.
Christiano, R., Kolev, N.G., Shi, H., Ullu, E., Walther, T.C. & Tschudi, C. (2017) The proteome and transcriptome of the infectious metacyclic form of Trypanosoma brucei define quiescent cells primed for mammalian invasion. Molecular Microbiology, 106, 74-92.
Clarkson, A.B. Jr, Bienen, E.J., Pollakis, G. & Grady, R.W. (1989) Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. Journal of Biological Chemistry, 264, 17770-17776.
Colasante, C., Zheng, F., Kemp, C. & Voncken, F. (2018) A plant-like mitochondrial carrier family protein facilitates mitochondrial transport of di- and tricarboxylates in Trypanosoma brucei. Molecular and Biochemical Parasitology, 221, 36-51.
Coustou, V., Besteiro, S., Riviere, L., Biran, M., Biteau, N., Franconi, J.M. et al. (2005) A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei. Journal of Biological Chemistry, 280, 16559-16570.
Coustou, V., Biran, M., Breton, M., Guegan, F., Riviere, L., Plazolles, N. et al. (2008) Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. Journal of Biological Chemistry, 283, 16342-16354.
Coustou, V., Guegan, F., Plazolles, N. & Baltz, T. (2010) Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools. PLoS Neglected Tropical Diseases, 4, e618.
Creek, D.J., Mazet, M., Achcar, F., Anderson, J., Kim, D.H., Kamour, R. et al. (2015) Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Path, 11, e1004689.
Dejung, M., Subota, I., Bucerius, F., Dindar, G., Freiwald, A., Engstler, M. et al. (2016) Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei. PLoS Path, 12, e1005439.
Dewar, C.E., Casas-Sanchez, A., Dieme, C., Crouzols, A., Haines, L.R., Acosta-Serrano, A. et al. (2022) Oxidative phosphorylation is required for powering motility and development of the sleeping sickness parasite Trypanosoma brucei in the tsetse fly vector. MBio, 13, e0235721.
Dewar, C.E., MacGregor, P., Cooper, S., Gould, M.K., Matthews, K.R., Savill, N.J. et al. (2018) Mitochondrial DNA is critical for longevity and metabolism of transmission stage Trypanosoma brucei. PLoS Path, 14, e1007195.
Dolezelova, E., Kunzova, M., Dejung, M., Levin, M., Panicucci, B., Regnault, C. et al. (2020) Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biology, 18, e3000741.
Duarte, M. & Tomas, A.M. (2014) The mitochondrial complex I of trypanosomatids-an overview of current knowledge. Journal of Bioenergetics and Biomembranes, 46, 299-311.
Durieux, P.O., Schutz, P., Brun, R. & Kohler, P. (1991) Alterations in Krebs cycle enzyme activities and carbohydrate catabolism in two strains of Trypanosoma brucei during in vitro differentiation of their bloodstream to procyclic stages. Molecular and Biochemical Parasitology, 45, 19-27.
Dyer, N.A., Rose, C., Ejeh, N.O. & Acosta-Serrano, A. (2013) Flying tryps: survival and maturation of trypanosomes in tsetse flies. Trends in Parasitology, 29, 188-196.
Ebersoll, S., Bogacz, M., Gunter, L.M., Dick, T.P. & Krauth-Siegel, R.L. (2020) A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes. eLife, 9, e53227.
Engstler, M. & Boshart, M. (2004) Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes & Development, 18, 2798-2811.
Eze, A.A., Gould, M.K., Munday, J.C., Tagoe, D.N., Stelmanis, V., Schnaufer, A. et al. (2016) Reduced mitochondrial membrane potential is a late adaptation of Trypanosoma brucei brucei to isometamidium preceded by mutations in the gamma subunit of the F1Fo-ATPase. PLoS Neglected Tropical Diseases, 10, e0004791.
Fang, J. & Beattie, D.S. (2002) Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization. Biochemistry, 41, 3065-3072.
Fang, J. & Beattie, D.S. (2003) Identification of a gene encoding a 54 kDa alternative NADH dehydrogenase in Trypanosoma brucei. Molecular and Biochemical Parasitology, 127, 73-77.
Gahura, O., Hierro-Yap, C. & Zikova, A. (2021) Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Parasitology, 148, 1151-1160.
Gahura, O., Mühleip, A., Hierro-Yap, C., Panicucci, B., Jain, M., Hollaus, D. et al. (2021) An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases. bioRxiv, 2021.10.10.463820.
Garcia-Bermudez, J. & Cuezva, J.M. (2016) The ATPase inhibitory factor 1 (IF1): a master regulator of energy metabolism and of cell survival. Biochimica Et Biophysica Acta-Bioenergetics, 1857, 1167-1182.
Gibson, W., Kay, C. & Peacock, L. (2017) Trypanosoma congolense: molecular toolkit and resources for studying a major livestock pathogen and model trypanosome. Advances in Parasitology, 98, 283-309.
Gnipova, A., Panicucci, B., Paris, Z., Verner, Z., Horvath, A., Lukes, J. et al. (2012) Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits. Molecular and Biochemical Parasitology, 184, 90-98.
Gottier, P., Serricchio, M., Vitale, R., Corcelli, A. & Butikofer, P. (2017) Cross-species complementation of bacterial- and eukaryotic-type cardiolipin synthases. Microbial Cell, 4, 376-383.
Gould, M.K. & Schnaufer, A. (2014) Independence from Kinetoplast DNA maintenance and expression is associated with multidrug resistance in Trypanosoma brucei in vitro. Antimicrobial Agents and Chemotherapy, 58, 2925-2928.
Grant, P.T. & Sargent, J.R. (1960) Properties of L-alpha-glycerophosphate oxidase and its role in the respiration of Trypanosoma rhodesiense. The Biochemical Journal, 76, 229-237.
Haanstra, J.R., Gonzalez-Marcano, E.B., Gualdron-Lopez, M. & Michels, P.A.M. (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochimica Et Biophysica Acta-Molecular Cell Research, 1863, 1038-1048.
Haiens, T.H. & Dencher, N.A. (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Letters, 528, 35-39.
Haindrich, A.C., Ernst, V., Naguleswaran, A., Oliveres, Q.F., Roditi, I. & Rentsch, D. (2021) Nutrient availability regulates proline/alanine transporters in Trypanosoma brucei. Journal of Biological Chemistry, 296, 100566.
Helfert, S., Estevez, A.M., Bakker, B., Michels, P. & Clayton, C. (2001) Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. The Biochemical Journal, 357, 117-125.
van Hellemond, J.J., Opperdoes, F.R. & Tielens, A.G. (2005) The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochemical Society Transactions, 33, 967-971.
Herzig, S. & Shaw, R.J. (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nature Reviews Molecular Cell Biology, 19, 121-135.
Hierro-Yap, C., Subrtova, K., Gahura, O., Panicucci, B., Dewar, C., Chinopoulos, C. et al. (2021) Bioenergetic consequences of FoF1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. Journal of Biological Chemistry, 296, 100357.
Horn, D. (2022) A profile of research on the parasitic trypanosomatids and the diseases they cause. PLoS Neglected Tropical Diseases, 16, e0010040.
Horvath, A., Horakova, E., Dunajcikova, P., Verner, Z., Pravdova, E., Slapetova, I. et al. (2005) Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Molecular Microbiology, 58, 116-130.
Houtkooper, R.H. & Vaz, F.M. (2008) Cardiolipin, the heart of mitochondrial metabolism. Cellular and Molecular Life Sciences, 65, 2493-2506.
Huang, G. & Docampo, R. (2018) The mitochondrial Ca(2+) uniporter complex (MCUC) of Trypanosoma brucei is a hetero-oligomer that contains novel subunits essential for Ca(2+) uptake. MBio, 9, e01700-18.
Huang, G., Vercesi, A.E. & Docampo, R. (2013) Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nature Communications, 4, 2865.
Imhof, S., Knusel, S., Gunasekera, K., Vu, X.L. & Roditi, I. (2014) Social motility of African trypanosomes is a property of a distinct life-cycle stage that occurs early in tsetse fly transmission. PLoS Path, 10, e1004493.
Johnston, K., Kim, D.H., Kerkhoven, E.J., Burchmore, R., Barrett, M.P. & Achcar, F. (2019) Mapping the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U-C-13-labelled substrates and LC-MS. Bioscience Reports, 39, BSR20181601.
Kolev, N.G., Ramey-Butler, K., Cross, G.A.M., Ullu, E. & Tschudi, C. (2012) Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein. Science, 338, 1352-1353.
Kovarova, J. & Barrett, M.P. (2016) The pentose phosphate pathway in parasitic trypanosomatids. Trends in Parasitology, 32, 622-634.
Kovarova, J., Nagar, R., Faria, J., Ferguson, M.A.J., Barrett, M.P. & Horn, D. (2018) Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Path, 14, e1007475.
Krauth-Siegel, R.L. & Comini, M.A. (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochimica Et Biophysica Acta, 1780, 1236-1248.
Kuhlbrandt, W. (2019) Structure and mechanisms of F-type ATP synthases. Annual Review of Biochemistry, 88, 515-549.
Lamour, N., Riviere, L., Coustou, V., Coombs, G.H., Barrett, M.P. & Bringaud, F. (2005) Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. Journal of Biological Chemistry, 280, 11902-11910.
Lanteri, C.A., Tidwell, R.R. & Meshnick, S.R. (2008) The mitochondrion is a site of trypanocidal action of the aromatic diamidine DB75 in bloodstream forms of Trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 52, 875-882.
Leroux, A.E., Maugeri, D.A., Cazzulo, J.J. & Nowicki, C. (2011) Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Molecular and Biochemical Parasitology, 177, 61-64.
Luevano-Martinez, L.A., Girard, R.M.B.M., Alencar, M.B. & Silber, A.M. (2020) ATP regulates the activity of an alternative oxidase in Trypanosoma brucei. FEBS Letters, 594, 2150-2158.
Lukes, J. & Basu, S. (2015) Fe/S protein biogenesis in trypanosomes - a review. Biochimica Et Biophysica Acta, 1853, 1481-1492.
Maguire, J.J., Tyurina, Y.Y., Mohammadyani, D., Kapralov, A.A., Anthonymuthu, T.S., Qu, F. et al. (2017) Known unknowns of cardiolipin signaling: the best is yet to come. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 1862, 8-24.
Mannella, C.A. (2020) Consequences of folding the mitochondrial inner membrane. Frontiers in Physiology, 11, 536.
Mantilla, B.S., Marchese, L., Casas-Sanchez, A., Dyer, N.A., Ejeh, N., Biran, M. et al. (2017) Proline metabolism is essential for Trypanosoma brucei brucei survival in the tsetse vector. PLoS Path, 13, e1006158.
Mantilla, B.S., Paes-Vieira, L., de Almeida Dias, F., Calderano, S.G., Elias, M.C., Cosentino-Gomes, D. et al. (2021) Higher expression of proline dehydrogenase altered mitochondrial function and increased Trypanosoma cruzi differentiation in vitro and in the insect vector. The Biochemical Journal, 478, 3891-3903.
Marchese, L., Olavarria, K., Mantilla, B.S., Avila, C.C., Souza, R.O.O., Damasceno, F.S. et al. (2020) Trypanosoma cruzi synthesizes proline via a Delta(1)-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools. Biochemical Journal, 477, 1827-1845.
Martinez-Reyes, I. & Chandel, N.S. (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications, 11, 102.
Mazet, M., Morand, P., Biran, M., Bouyssou, G., Courtois, P., Daulouede, S. et al. (2013) Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability. PLoS Neglected Tropical Diseases, 7, e2587.
Menzies, S.K., Tulloch, L.B., Florence, G.J. & Smith, T.K. (2018) The trypanosome alternative oxidase: a potential drug target? Parasitology, 145, 175-183.
Michels, P.A.M., Villafraz, O., Pineda, E., Alencar, M.B., Caceres, A.J., Silber, A.M. et al. (2021) Carbohydrate metabolism in trypanosomatids: new insights revealing novel complexity, diversity and species-unique features. Experimental Parasitology, 224, 108102.
Millerioux, Y., Ebikeme, C., Biran, M., Morand, P., Bouyssou, G., Vincent, I.M. et al. (2013) The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control. Molecular Microbiology, 90, 114-129.
Millerioux, Y., Morand, P., Biran, M., Mazet, M., Moreau, P., Wargnies, M. et al. (2012) ATP synthesis-coupled and -uncoupled acetate production from acetyl-CoA by mitochondrial acetate:succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma. Journal of Biological Chemistry, 287, 17186-17197.
Mochizuki, K., Inaoka, D.K., Mazet, M., Shiba, T., Fukuda, K., Kurasawa, H. et al. (2020) The ASCT/SCS cycle fuels mitochondrial ATP and acetate production in Trypanosoma brucei. Biochimica Et Biophysica Acta-Bioenergetics, 1861, 148283.
Montgomery, M.G., Gahura, O., Leslie, A.G.W., Zikova, A. & Walker, J.E. (2018) ATP synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites. Proceedings of the National Academy of Sciences of the United States of America, 115, 2102-2107.
Mugnier, M.R., Stebbins, C.E. & Papavasiliou, F.N. (2016) Masters of disguise: antigenic variation and the VSG coat in Trypanosoma brucei. PLoS Path, 12, e1005784.
Naguleswaran, A., Doiron, N. & Roditi, I. (2018) RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages. BMC Genomics, 19, 227.
Naguleswaran, A., Fernandes, P., Bevkal, S., Rehmann, R., Nicholson, P. & Roditi, I. (2021) Developmental changes and metabolic reprogramming during establishment of infection and progression of Trypanosoma brucei brucei through its insect host. PLoS Neglected Tropical Diseases, 15, e0009504.
Nolan, D.P. & Voorheis, H.P. (1992) The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. European Journal of Biochemistry, 209, 207-216.
Opperdoes, F.R., Borst, P., Bakker, S. & Leene, W. (1977) Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulate NAD+-linked glycerol-3-phosphate dehydrogenase in the microbodies of the bloodstream form to Trypanosoma brucei. European Journal of Biochemistry, 76, 29-39.
Paes, L.S., Suarez Mantilla, B., Zimbres, F.M., Pral, E.M., Diogo de Melo, P., Tahara, E.B. et al. (2013) Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi. PLoS One, 8, e69419.
Panicucci, B., Gahura, O. & Zikova, A. (2017) Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite. PLoS Neglected Tropical Diseases, 11, e0005552.
Paradies, G., Paradies, V., Ruggiero, F.M. & Petrosillo, G. (2019) Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells, 8, 728.
Pedra-Rezende, Y., Bombaca, A.C.S. & Menna-Barreto, R.F.S. (2022) Is the mitochondrion a promising drug target in trypanosomatids? Memorias do Instituto Oswaldo Cruz, 117, e210379.
Pfeiffer, K., Gohil, V., Stuart, R.A., Hunte, C., Brandt, U., Greenberg, M.L. et al. (2003) Cardiolipin stabilizes respiratory chain supercomplexes. Journal of Biological Chemistry, 278, 52873-52880.
Pineda, E., Thonnus, M., Mazet, M., Mourier, A., Cahoreau, E., Kulyk, H. et al. (2018) Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: analysis of metabolic adaptations on glycerol-rich conditions. PLoS Path, 14, e1007412.
Pullman, M.E. & Monroy, G.C. (1963) A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. Journal of Biological Chemistry, 238, 3762-3769.
Ren, M.D., Phoon, C.K.L. & Schlame, M. (2014) Metabolism and function of mitochondrial cardiolipin. Progress in Lipid Research, 55, 1-16.
Riviere, L., Moreau, P., Allmann, S., Hahn, M., Biran, M., Plazolles, N. et al. (2009) Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 106, 12694-12699.
Riviere, L., van Weelden, S.W., Glass, P., Vegh, P., Coustou, V., Biran, M. et al. (2004) Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism. Journal of Biological Chemistry, 279, 45337-45346.
Roditi, I., Schumann, G. & Naguleswaran, A. (2016) Environmental sensing by African trypanosomes. Current Opinion in Microbiology, 32, 26-30.
Rojas, F. & Matthews, K.R. (2019) Quorum sensing in African trypanosomes. Current Opinion in Microbiology, 52, 124-129.
Rojas, F., Silvester, E., Young, J., Milne, R., Tettey, M., Houston, D.R. et al. (2019) Oligopeptide signaling through TbGPR89 drives trypanosome quorum sensing. Cell, 176, 306-317 e16.
Rotureau, B. & Van Den Abbeele, J. (2013) Through the dark continent: African trypanosome development in the tsetse fly. Frontiers in Cellular and Infection Microbiology, 3, 53.
Ryley, J.F. (1956) Studies on the metabolism of the Protozoa. 7. Comparative carbohydrate metabolism of eleven species of trypanosome. The Biochemical Journal, 62, 215-222.
Saldivia, M., Ceballos-Perez, G., Bart, J.M. & Navarro, M. (2016) The AMPKalpha1 pathway positively regulates the developmental transition from proliferation to quiescence in Trypanosoma brucei. Cell Reports, 17, 660-670.
Savage, A.F., Kolev, N.G., Franklin, J.B., Vigneron, A., Aksoy, S. & Tschudi, C. (2016) Transcriptome profiling of Trypanosoma brucei development in the tsetse fly vector Glossina morsitans. PLoS One, 11, e0168877.
Schadeli, D., Serricchio, M., Ben Hamidane, H., Loffreda, A., Hemphill, A., Beneke, T. et al. (2019) Cardiolipin depletion-induced changes in the Trypanosoma brucei proteome. The FASEB Journal, 33, 13161-13175.
Schnaufer, A., Clark-Walker, G.D., Steinberg, A.G. & Stuart, K. (2005) The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO Journal, 24, 4029-4040.
Schneider, A. (2020) Evolution of mitochondrial protein import - lessons from trypanosomes. Biological Chemistry, 401, 663-676.
Schneider, A. & Ochsenreiter, T. (2018) Failure is not an option - mitochondrial genome segregation in trypanosomes. Journal of Cell Science, 131, jcs221820.
Serricchio, M. & Butikofer, P. (2012) An essential bacterial-type cardiolipin synthase mediates cardiolipin formation in a eukaryote. Proceedings of the National Academy of Sciences of the United States of America, 109, E954-E961.
Serricchio, M., Hierro-Yap, C., Schadeli, D., Ben Hamidane, H., Hemphill, A., Graumann, J. et al. (2021) Depletion of cardiolipin induces major changes in energy metabolism in Trypanosoma brucei bloodstream forms. The FASEB Journal, 35, e21176.
Shaw, S., Knusel, S., Abbuhl, D., Naguleswaran, A., Etzensperger, R., Benninger, M. et al. (2022) Cyclic AMP signalling and glucose metabolism mediate pH taxis by African trypanosomes. Nature Communications, 13, 603.
Shiba, T., Kido, Y., Sakamoto, K., Inaoka, D.K., Tsuge, C., Tatsumi, R. et al. (2013) Structure of the trypanosome cyanide-insensitive alternative oxidase. Proceedings of the National Academy of Sciences of the United States of America, 110, 4580-4585.
Sies, H. (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biology, 11, 613-619.
Sies, H. & Jones, D.P. (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology, 21, 363-383.
Skodova, I., Verner, Z., Bringaud, F., Fabian, P., Lukes, J. & Horvath, A. (2013) Characterization of two mitochondrial flavin adenine dinucleotide-dependent glycerol-3-phosphate dehydrogenases in Trypanosoma brucei. Eukaryotic Cell, 12, 1664-1673.
Smith, T.K., Bringaud, F., Nolan, D.P. & Figueiredo, L.M. (2017) Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Research, 6, 683.
Spitznagel, D., Ebikeme, C., Biran, M., Nic a′ Bháird, N., Bringaud, F., Henehan, G.T.M. et al. (2009) Alanine aminotransferase of Trypanosoma brucei-a key role in proline metabolism in procyclic life forms. FEBS Journal, 276, 7187-7199.
Stafkova, J., Mach, J., Biran, M., Verner, Z., Bringaud, F. & Tachezy, J. (2016) Mitochondrial pyruvate carrier in Trypanosoma brucei. Molecular Microbiology, 100, 442-456.
Steketee, P.C., Dickie, E.A., Iremonger, J., Crouch, K., Paxton, E., Jayaraman, S. et al. (2021) Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition. PLoS Path, 17, e1009734.
Subrtova, K., Panicucci, B. & Zikova, A. (2015) ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Path, 11, e1004660.
Surve, S., Heestand, M., Panicucci, B., Schnaufer, A. & Parsons, M. (2012) Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryotic Cell, 11, 183-193.
Surve, S.V., Jensen, B.C., Heestand, M., Mazet, M., Smith, T.K., Bringaud, F. et al. (2016) NADH dehydrogenase of Trypanosoma brucei is important for efficient acetate production in bloodstream forms. Molecular and Biochemical Parasitology, 211, 57-61.
Szoor, B., Silvester, E. & Matthews, K.R. (2020) A leap into the unknown - early events in African trypanosome transmission. Trends in Parasitology, 36, 266-278.
Toh, J.Y., Nkouawa, A., Sanchez, S.R., Shi, H., Kolev, N.G. & Tschudi, C. (2021) Identification of positive and negative regulators in the stepwise developmental progression towards infectivity in Trypanosoma brucei. Scientific Reports, 11, 5755.
Topf, U., Suppanz, I., Samluk, L., Wrobel, L., Boser, A., Sakowska, P. et al. (2018) Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Nature Communications, 9, 324.
Trindade, S., Rijo-Ferreira, F., Carvalho, T., Pinto-Neves, D., Guegan, F., Aresta-Branco, F. et al. (2016) Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host & Microbe, 19, 837-848.
Van Hellemond, J.J., Opperdoes, F.R. & Tielens, A.G.M. (1998) Trypanosomatidae produce acetate via a mitochondrial acetate: succinate CoA transferase. Proceedings of the National Academy of Sciences of the United States of America, 95, 3036-3041.
Vassella, E., Den Abbeele, J.V., Butikofer, P., Renggli, C.K., Furger, A., Brun, R. et al. (2000) A major surface glycoprotein of trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes & Development, 14, 615-626.
Verner, Z., Basu, S., Benz, C., Dixit, S., Dobakova, E., Faktorova, D. et al. (2015) Malleable mitochondrion of Trypanosoma brucei. International Review of Cell and Molecular Biology, 315, 73-151.
Verner, Z., Cermakova, P., Skodova, I., Kriegova, E., Horvath, A. & Lukes, J. (2011) Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. Molecular and Biochemical Parasitology, 175, 196-200.
Verner, Z., Skodova, I., Polakova, S., Durisova-Benkovicova, V., Horvath, A. & Lukes, J. (2013) Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei. Parasitology, 140, 328-337.
Vickerman, K. (1965) Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature, 208, 762-766.
Vickerman, K. (1985) Developmental cycles and biology of pathogenic trypanosomes. British Medical Bulletin, 41, 105-114.
Villafraz, O., Biran, M., Pineda, E., Plazolles, N., Cahoreau, E., Souza, R.O.O. et al. (2021) Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline. PLoS Path, 17, e1009204.
Walker, J.E. (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochemical Society Transactions, 41, 1-16.
Walsh, B. & Hill, K.L. (2021) Right place, right time: environmental sensing and signal transduction directs cellular differentiation and motility in Trypanosoma brucei. Molecular Microbiology, 115, 930-941.
Wang, X., Inaoka, D.K., Shiba, T., Balogun, E.O., Allmann, S., Watanabe, Y.I. et al. (2017) Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from Trypanosoma brucei brucei. Protein Expression and Purification, 138, 56-62.
Wargnies, M., Bertiaux, E., Cahoreau, E., Ziebart, N., Crouzols, A., Morand, P. et al. (2018) Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Path, 14, e1007502.
van Weelden, S.W., Fast, B., Vogt, A., van der Meer, P., Saas, J., van Hellemond, J.J. et al. (2003) Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. Journal of Biological Chemistry, 278, 12854-12863.
Yabu, Y., Suzuki, T., Nihei, C., Minagawa, N., Hosokawa, T., Nagai, K. et al. (2006) Chemotherapeutic efficacy of ascofuranone in Trypanosoma vivax-infected mice without glycerol. Parasitology International, 55, 39-43.
Yabu, Y., Yoshida, A., Suzuki, T., Nihei, C., Kawai, K., Minagawa, N. et al. (2003) The efficacy of ascofuranone in a consecutive treatment on Trypanosoma brucei brucei in mice. Parasitology International, 52, 155-164.
Zhang, M., Mileykovskaya, E. & Dowhan, W. (2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. Journal of Biological Chemistry, 280, 29403-29408.
Zikova, A., Schnaufer, A., Dalley, R.A., Panigrahi, A.K. & Stuart, K.D. (2009) The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Path, 5, e1000436.
Zikova, A., Verner, Z., Nenarokova, A., Michels, P.A.M. & Lukes, J. (2017) A paradigm shift: the mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Path, 13, e1006679.
Zmijewski, J.W., Banerjee, S., Bae, H., Friggeri, A., Lazarowski, E.R. & Abraham, E. (2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. Journal of Biological Chemistry, 285, 33154-33164.