The Core MICOS Complex Subunit mic60 has Been Substituted by Two Cryptic Mitofilin-containing Proteins in Euglenozoa

. 2025 Oct 29 ; 42 (11) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41208531

Grantová podpora
23-07674S Czech Science Foundation
CZ.10.03.01/00/22_003/0000003 European Union
Operational Program Just Transition
Czech BioImaging
Czech Ministry of Education
Boehringer Ingelheim Fonds PhD Fellowship
SFB-1638/1-511488495 - P08 Deutsche Forschungsgemeinschaft
FOR-2848-401510699 - P05 Deutsche Forschungsgemeinschaft
67985823 Institute of Physiology
68378050 Institute of Molecular Genetics
Czech Academy of Sciences
Laboratory of Microscopy and Histology
Biology Center, Czech Academy of Sciences
German Research Founda1on
Federal Ministry of Educa1on and Research
Ministry of Science Baden-WürOemberg
Excellence Strategy of the Federal and State Governments of Germany

Cristae enclose respiratory chain complexes, making them the bioenergetic subcompartments of mitochondria. The Mitochondrial contact site and Cristae Organizing System (MICOS) complex is among the inducers of membrane curvature needed for crista formation. Resembling the respiratory chain complexes, MICOS is organized around a core protein, the mitofilin-domain bearing Mic60, that was inherited from the alphaproteobacterial progenitor of mitochondria. Extant alphaproteobacteria express Mic60 to form their own bioenergetic subcompartments, demonstrating the permeance of Mic60's form and function during prokaryotic and eukaryotic evolution. Yet, unlike virtually all aerobic eukaryotes, Mic60 is not encoded within the genomes of the multifarious protists that comprise the phylum Euglenozoa, including trypanosomes. Here, we show that Mic60 has been replaced in euglenozoans by two cryptic mitofilin domain-containing MICOS subunits, Mic34 and Mic40. Contrasting alphaproteobacterial and mitochondrial Mic60, these are not integral membrane proteins. Mic34 and Mic40 are as diverged from each other as both are to canonical Mic60. Reverse genetics revealed they are intertwined with the oxidative protein folding pathway required for mitochondrial-and crista-biogenesis, veiling a potential membrane remodeling role. Nevertheless, Mic34 binds phospholipid bilayers in vitro. Mic34 and Mic40 heterologous expression remodels gammaproteobacterial cytoplasmic membranes, like Mic60. Unexpectedly, Mic34 overexpression elaborates the simplified tubular mitochondrion of a Trypanosoma brucei life cycle stage with repressed oxidative phosphorylation. Furthermore, this activity was ablated by mutations to Mic34's mitofilin domain that correspond to essential motifs found in yeast Mic60's mitofilin domain. Thus, the mitofilin protein family is more diverse than originally supposed, with two of its structurally most divergent members altering the core of euglenozoan MICOS.

Zobrazit více v PubMed

Aaltonen  MJ  et al.  MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria. J Cell Biol. 2016:213:525–534. 10.1083/jcb.201602007. PubMed DOI PMC

Altschul  SF  et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.  1997:25:3389–3402. 10.1093/nar/25.17.3389. PubMed DOI PMC

Alvarez-Jarreta  J  et al.  VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center in 2023. Nucleic Acids Res.  2024:52:D808–D816. 10.1093/nar/gkad1003. PubMed DOI PMC

Barbot  M  et al.  Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metab. 2015:21:756–763. 10.1016/j.cmet.2015.04.006. PubMed DOI

Barbot  M, Meinecke  M. Reconstitutions of mitochondrial inner membrane remodeling. J Struct Biol. 2016:196:20–28. 10.1016/j.jsb.2016.07.014. PubMed DOI

Benning  FMC  et al.  Ancestral sequence reconstruction of Mic60 reveals a residue signature supporting respiration in yeast. Protein Sci. 2025:34:e70207. 10.1002/pro.70207. PubMed DOI PMC

Benz  C  et al.  Kinetoplastid-specific X2-family kinesins interact with a kinesin-like pleckstrin homology domain protein that localizes to the trypanosomal microtubule quartet. Mol Microbiol. 2022:118:155–174. 10.1111/mmi.14958. PubMed DOI

Bílý  T  et al.  Ultrastructural changes of the mitochondrion during the life cycle of PubMed DOI

Bock-Bierbaum  T  et al.  Structural insights into crista junction formation by the Mic60-Mic19 complex. Sci Adv. 2022:8:eabo4946. 10.1126/sciadv.abo4946. PubMed DOI PMC

Burki  F, Roger  AJ, Brown  MW, Simpson  AGB. The new tree of eukaryotes. Trends Ecol Evol. 2020:35:43–55. 10.1016/j.tree.2019.08.008. PubMed DOI

Cadena  LR  et al.  Mitochondrial contact site and Cristae organization system and F PubMed DOI PMC

Capella-Gutiérrez  S, Silla-Martínez  JM, Gabaldón  T. Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009:25:1972–1973. 10.1093/bioinformatics/btp348. PubMed DOI PMC

Cavalier-Smith  T. Higher classification and phylogeny of euglenozoa. Eur J Protistol. 2016:56:250–276. 10.1016/j.ejop.2016.09.003. PubMed DOI

Chaudhry  A, Shi  R, Luciani  DS. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells. Am J Physiol Endocrinol Metab. 2020:318:E87–E101. 10.1152/ajpendo.00457.2019. PubMed DOI PMC

Colina-Tenorio  L, Horten  P, Pfanner  N, Rampelt  H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med. 2020:287:645–664. 10.1111/joim.13031. PubMed DOI

Daumke  O, van der Laan  M. Molecular machineries shaping the mitochondrial inner membrane. Nat Rev Mol Cell Biol. 2025:26:706–724. 10.1038/s41580-41025-00854-z. PubMed DOI

Eddy  SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011:7:e1002195. 10.1371/journal.pcbi.1002195. PubMed DOI PMC

Eichenberger  C  et al.  The highly diverged trypanosomal MICOS complex is organized in a nonessential integral membrane and an essential peripheral module. Mol Microbiol. 2019:112:1731–1743. 10.1111/mmi.14389. PubMed DOI

Flaspohler John  A, Jensen Bryan  C, Saveria  T, Kifer Charles  T, Parsons  M. A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell. 2010:9:1702–1710. 10.1128/EC.00106-10. PubMed DOI PMC

Gleisner  M  et al.  Epsin N-terminal homology domain (ENTH) activity as a function of membrane tension. J Biol Chem. 2016:291:19953–19961. 10.1074/jbc.M116.731612. PubMed DOI PMC

Haindrich  AC  et al.  The intermembrane space protein Erv1 of PubMed DOI

Hammond  MJ  et al.  A uniquely Complex mitochondrial proteome from euglena gracilis. Mol Biol Evol. 2020:37:2173–2191. 10.1093/molbev/msaa061. PubMed DOI PMC

Hashimi  H. A parasite's take on the evolutionary cell biology of MICOS. PLoS Pathog. 2019:15:e1008166. 10.1371/journal.ppat.1008166. PubMed DOI PMC

Hessenberger  M  et al.  Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions. Nat Commun. 2017:8:15258. 10.1038/ncomms15258. PubMed DOI PMC

Hirumi  H, Hirumi  K. Continuous cultivation of trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol. 1989:75:985–989. 10.2307/3282883. PubMed DOI

Horvath  SE, Daum  G. Lipids of mitochondria. Prog Lipid Res. 2013:52:590–614. 10.1016/j.plipres.2013.07.002. PubMed DOI

Huerta-Cepas  J, Serra  F, Bork  P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016:33:1635–1638. 10.1093/molbev/msw046. PubMed DOI PMC

Hughes  L, Borrett  S, Towers  K, Starborg  T, Vaughan  S. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci. 2017:130:637–647. 10.1242/jcs.198887. PubMed DOI

Huynen  MA, Muhlmeister  M, Gotthardt  K, Guerrero-Castillo  S, Brandt  U. Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. Biochim Biophys Acta. 2016:1863:91–101. 10.1016/j.bbamcr.2015.10.009. PubMed DOI

Jakob  M  et al.  Mitochondrial growth during the cell cycle of PubMed DOI PMC

Johnston  HE  et al.  Solvent precipitation SP3 (SP4) enhances recovery for proteomics sample preparation without magnetic beads. Anal Chem. 2022:94:10320–10328. 10.1021/acs.analchem.1c04200. PubMed DOI PMC

Katoh  K, Rozewicki  J, Yamada  KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019:20:1160–1166. 10.1093/bib/bbx108. PubMed DOI PMC

Kaurov  I  et al.  The essential cysteines in the CIPC motif of the thioredoxin-like trypanosoma brucei MICOS subunit TbMic20 do not form an intramolecular disulfide bridge in vivo. Mol Biochem Parasitol. 2022:248:111463. 10.1016/j.molbiopara.2022.111463. PubMed DOI

Kaurov  I  et al.  The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr Biol. 2018:28:3393–3407.e5. 10.1016/j.cub.2018.09.008. PubMed DOI

Kostygov  AY  et al.  Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021:11:200407. 10.1098/rsob.200407. PubMed DOI PMC

Kroppen  B  et al.  Cooperativity of membrane-protein and protein–protein interactions control membrane remodeling by epsin 1 and affects clathrin-mediated endocytosis. Cell Mol Life Sci. 2021:78:2355–2370. 10.1007/s00018-020-03647-z. PubMed DOI PMC

Kühlbrandt  W. Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem. 2019:88:515–549. 10.1146/annurev-biochem-013118-110903. PubMed DOI

Lax  G  et al.  Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Mol Phylogen Evol. 2021:159:107088. 10.1016/j.ympev.2021.107088. PubMed DOI

Letunic  I, Bork  P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res.  2024:52:W78–W82. 10.1093/nar/gkae268. PubMed DOI PMC

Mastronarde  DN, Held  SR. Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol. 2017:197:102–113. 10.1016/j.jsb.2016.07.011. PubMed DOI PMC

Meng  EC  et al.  UCSF chimeraX: tools for structure building and analysis. Protein Sci. 2023:32:e4792. 10.1002/pro.4792. PubMed DOI PMC

Michaud  M  et al.  Atmic60 is involved in plant mitochondria lipid trafficking and is part of a large complex. Curr Biol. 2016:26:627–639. 10.1016/j.cub.2016.01.011. PubMed DOI PMC

Miroux  B, Walker  JE. Over-production of proteins in PubMed DOI

Mordas  A, Tokatlidis  K. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Acc Chem Res. 2015:48:2191–2199. 10.1021/acs.accounts.5b00150. PubMed DOI PMC

Muñoz-Gómez  SA  et al.  Intracytoplasmic-membrane development in alphaproteobacteria involves the homolog of the mitochondrial crista-developing protein Mic60. Curr Biol. 2023:33:1099–1111.e6. 10.1016/j.cub.2023.02.059. PubMed DOI

Muñoz-Gómez  SA  et al.  Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr Biol. 2015:25:1489–1495. 10.1016/j.cub.2015.04.006. PubMed DOI

Muñoz-Gomez  SA, Wideman  JG, Roger  AJ, Slamovits  CH. The origin of mitochondrial cristae from alphaproteobacteria. Mol Biol Evol. 2017:34:943–956. 10.1093/molbev/msw298. PubMed DOI

Niemann  M  et al.  Mitochondrial outer membrane proteome of trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Mol Cell Proteom. 2013:12:515–528. 10.1074/mcp.M112.023093. PubMed DOI PMC

Pánek  T, Eliáš  M, Vancová  M, Lukeš  J, Hashimi  H. Returning to the fold for lessons in mitochondrial Crista diversity and evolution. Curr Biol. 2020:30:R575–R588. 10.1016/j.cub.2020.02.053. PubMed DOI

Peikert  CD  et al.  Charting organellar importomes by quantitative mass spectrometry. Nat Commun. 2017:8:15272. 10.1038/ncomms15272. PubMed DOI PMC

Poon  SK, Peacock  L, Gibson  W, Gull  K, Kelly  S. A modular and optimized single marker system for generating PubMed DOI PMC

Prokopchuk  G  et al.  Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc. 2023:98:1910–1927. 10.1111/brv.12988. PubMed DOI PMC

Rabl  R  et al.  Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and su PubMed DOI PMC

Rampelt  H  et al.  Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. Cell Rep. 2022:38:110290. 10.1016/j.celrep.2021.110290. PubMed DOI PMC

Richter  DJ  et al.  EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022:2:e56. 10.24072/pcjournal.173. DOI

Roger  AJ, Munoz-Gomez  SA, Kamikawa  R. The origin and diversification of mitochondria. Curr Biol. 2017:27:R1177–R1192. 10.1016/j.cub.2017.09.015. PubMed DOI

Schindelin  J  et al.  Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012:9:676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Smith  JT, Singha  UK, Misra  S, Chaudhuri  M. Divergent small tim homologues are associated with TbTim17 and critical for the biogenesis of TbTim17 protein complexes in PubMed DOI PMC

Söding  J, Biegert  A, Lupas  AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res.  2005:33:W244–W248. 10.1093/nar/gki408. PubMed DOI PMC

Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014:30:1312–1313. 10.1093/bioinformatics/btu033. PubMed DOI PMC

Stephan  T  et al.  MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 2020:39:e104105. 10.15252/embj.2019104105. PubMed DOI PMC

Tarasenko  D  et al.  The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology. J Cell Biol. 2017:216:889–899. 10.1083/jcb.201609046. PubMed DOI PMC

Turra  GL  et al. PubMed DOI PMC

Van Laar  VS, Berman  SB, Hastings  TG. Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone. Neurobiol Dis. 2016:91:247–261. 10.1016/j.nbd.2016.03.015. PubMed DOI PMC

Varabyova  A  et al.  Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1. FEBS J. 2013:280:4943–4959. 10.1111/febs.12409. PubMed DOI

von der Malsburg  K  et al.  Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell. 2011:21:694–707. 10.1016/j.devcel.2011.08.026. PubMed DOI

Wenger  C, Oeljeklaus  S, Warscheid  B, Schneider  A, Harsman  A. A trypanosomal orthologue of an intermembrane space chaperone has a non-canonical function in biogenesis of the single mitochondrial inner membrane protein translocase. PLoS Pathog. 2017:13:e1006550. 10.1371/journal.ppat.1006550. PubMed DOI PMC

Wheeler  RJ. A resource for improved predictions of trypanosoma and leishmania protein three-dimensional structure. PLoS One. 2021:16:e0259871. 10.1371/journal.pone.0259871. PubMed DOI PMC

Zíková  A. Mitochondrial adaptations throughout the PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...