The highly diverged trypanosomal MICOS complex is organized in a nonessential integral membrane and an essential peripheral module
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31541487
DOI
10.1111/mmi.14389
Knihovny.cz E-zdroje
- MeSH
- membránové proteiny metabolismus MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondriální proteiny metabolismus fyziologie MeSH
- mitochondrie metabolismus MeSH
- transport proteinů MeSH
- transportní proteiny mitochondriální membrány metabolismus MeSH
- Trypanosoma brucei brucei metabolismus fyziologie MeSH
- Trypanosoma metabolismus fyziologie MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- mitochondriální proteiny MeSH
- transportní proteiny mitochondriální membrány MeSH
The mitochondrial contact site and cristae organization system (MICOS) mediates the formation of cristae, invaginations in the mitochondrial inner membrane. The highly diverged MICOS complex of the parasitic protist Trypanosoma brucei consists of nine subunits. Except for two Mic10-like and a Mic60-like protein, all subunits are specific for kinetoplastids. Here, we determined on a proteome-wide scale how ablation of individual MICOS subunits affects the levels of the other subunits. The results reveal co-regulation of TbMic10-1, TbMic10-2, TbMic16 and TbMic60, suggesting that these nonessential, integral inner membrane proteins form an interdependent network. Moreover, the ablation of TbMic34 and TbMic32 reveals another network consisting of the essential, intermembrane space-localized TbMic20, TbMic32, TbMic34 and TbMic40, all of which are peripherally associated with the inner membrane. The downregulation of TbMic20, TbMic32 and TbMic34 also interferes with mitochondrial protein import and reduces the size of the TbMic10-containing complexes. Thus, the diverged MICOS of trypanosomes contains two subcomplexes: a nonessential membrane-integrated one, organized around the conserved Mic10 and Mic60, that mediates cristae formation, and an essential membrane-peripheral one consisting of four kinetoplastid-specific subunits, that is required for import of intermembrane space proteins.
Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 Bern CH 3012 Switzerland
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Institute of Anatomy University of Bern Baltzerstrasse 2 Bern 3012 Switzerland
Institute of Parasitology Biology Center Czech Academy of Sciences České Budějovice Czech Republic
Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg 79104 Germany
Zobrazit více v PubMed
Aaltonen, M.J., Friedman, J.R., Osman, C., Salin, B., di Rago, J.P., Nunnari, J., et al. (2016) MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria. Journal of Cell Biology, 213, 525-534.
Alkhaja, A.K., Jans, D.C., Nikolov, M., Vukotic, M., Lytovchenko, O., Ludewig, F., et al. (2012) MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Molecular Biology of the Cell, 23, 247-257.
Barbot, M., Jans, D.C., Schulz, C., Denkert, N., Kroppen, B., Hoppert, M., et al. (2015) Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metabolism, 21, 756-763.
Basu, S., Leonard, J.C., Desai, N., Mavridou, D.A., Tang, K.H., Goddard, A.D., et al. (2013) Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists. Eukaryotic Cell, 12, 343-355.
Bochud-Allemann, N. and Schneider, A. (2002) Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei. Journal of Biological Chemistry, 277, 32849-32854.
Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. and Heck, A.J. (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature Protocols, 4, 484-494.
Bohnert, M., Wenz, L.S., Zerbes, R.M., Horvath, S.E., Stroud, D.A., von der Malsburg, K., et al. (2012) Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Molecular Biology of the Cell, 23, 3948-3956.
Bohnert, M., Zerbes, R.M., Davies, K.M., Muhleip, A.W., Rampelt, H., Horvath, S.E., et al. (2015) Central role of Mic10 in the mitochondrial contact site and cristae organizing system. Cell Metabolism, 21, 747-755.
Brodsky, F.M., Thattai, M. and Mayor, S. (2012) Evolutionary cell biology: lessons from diversity. Nature Cell Biology, 14, 651.
Burki, F. (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harbor Perspectives in Biology, 6, a016147.
Cox, J. and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26, 1367-1372.
Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V. and Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10, 1794-1805.
Ding, C., Wu, Z., Huang, L., Wang, Y., Xue, J., Chen, S., et al. (2015) Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure. Scientific Reports, 5, 16064.
Ebikeme, C.E., Peacock, L., Coustou, V., Riviere, L., Bringaud, F., Gibson, W.C., et al. (2008) N-acetyl D-glucosamine stimulates growth in procyclic forms of Trypanosoma brucei by inducing a metabolic shift. Parasitology, 135, 585-594.
Friedman, J.R., Mourier, A., Yamada, J., McCaffery, J.M. and Nunnari, J. (2015) MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife, 4, e07739.
Guarani, V., McNeill, E.M., Paulo, J.A., Huttlin, E.L., Frohlich, F., Gygi, S.P., et al. (2015) QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. eLife, 4, e06265.
Haindrich, A.C., Boudova, M., Vancova, M., Diaz, P.P., Horakova, E. and Lukes, J. (2017) The intermembrane space protein Erv1 of Trypanosoma brucei is essential for mitochondrial Fe-S cluster assembly and operates alone. Molecular and Biochemical Parasitology, 214, 47-51.
Harner, M., Korner, C., Walther, D., Mokranjac, D., Kaesmacher, J., Welsch, U., et al. (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO Journal, 30, 4356-4370.
Harner, M.E., Unger, A.K., Izawa, T., Walther, D.M., Ozbalci, C., Geimer, S., et al. (2014) Aim24 and MICOS modulate respiratory function, tafazzin-related cardiolipin modification and mitochondrial architecture. elife, 3, e01684.
Harsman, A., Oeljeklaus, S., Wenger, C., Huot, J.L., Warscheid, B. and Schneider, A. (2016) The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins. Nature Communications, 19, 13707.
Hauser, R., Pypaert, M., Häusler, T., Horn, E.K. and Schneider, A. (1996) In vitro import of proteins into mitochondria of Trypanosoma brucei and Leishmania tarentolae. Journal of Cell Science, 109, 517-523.
Hessenberger, M., Zerbes, R.M., Rampelt, H., Kunz, S., Xavier, A.H., Purfurst, B., et al. (2017) Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions. Nature Communications, 8, 15258.
Hoppins, S., Collins, S.R., Cassidy-Stone, A., Hummel, E., Devay, R.M., Lackner, L.L., et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. Journal of Cell Biology, 195, 323-340.
Huynen, M.A., Muhlmeister, M., Gotthardt, K., Guerrero-Castillo, S. and Brandt, U. (2016) Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. Biochimica Biophysica Acta, 1863, 91-101.
Itoh, K., Tamura, Y., Iijima, M. and Sesaki, H. (2013) Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology. Molecular Biology of the Cell, 24, 1842-1851.
Käser, S., Willemin, M., Schnarwiler, F., Schimanski, B., Poveda-Huertes, D., Oeljeklaus, S., et al. (2017) Biogenesis of the mitochondrial DNA inheritance machinery in the mitochondrial outer membrane of Trypanosoma brucei. PLoS Pathogen, 13, e1006808.
Kaurov, I., Vancova, M., Schimanski, B., Cadena, L.R., Heller, J., Bily, T., et al. (2018) The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Current Biology, 28(3393-3407), e3395.
Korner, C., Barrera, M., Dukanovic, J., Eydt, K., Harner, M., Rabl, R., et al. (2012) The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Molecular Biology of the Cell, 23, 2143-2155.
Kozjak-Pavlovic, V. (2017) The MICOS complex of human mitochondria. Cell Tissue Research, 367, 83-93.
van der Laan, M., Horvath, S.E. and Pfanner, N. (2016) Mitochondrial contact site and cristae organizing system. Current Opinion in Cell Biology, 41, 33-42.
Lamour, N., Riviere, L., Coustou, V., Coombs, G.H., Barrett, M.P. and Bringaud, F. (2005) Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. Journal of Biological Chemistry, 280, 11902-11910.
Li, H., Ruan, Y., Zhang, K., Jian, F., Hu, C., Miao, L., et al. (2016) Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. Cell Death Differentiation, 23, 380-392.
Lynch, M., Field, M.C., Goodson, H.V., Malik, H.S., Pereira-Leal, J.B., Roos, D.S., et al. (2014) Evolutionary cell biology: two origins, one objective. Proceedings of the National Academy of Science USA, 111, 16990-16994.
von der Malsburg, K., Muller, J.M., Bohnert, M., Oeljeklaus, S., Kwiatkowska, P., Becker, T., et al. (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Developmental Cell, 21, 694-707.
Michaud, M., Gros, V., Tardif, M., Brugiere, S., Ferro, M., Prinz, W.A., et al. (2016) AtMic60 Is involved in plant mitochondria lipid trafficking and is part of a large complex. Current Biology, 26, 627-639.
Mordas, A. and Tokatlidis, K. (2015) The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Accounts of Chemical Research, 48, 2191-2199.
Munoz-Gomez, S.A., Slamovits, C.H., Dacks, J.B., Baier, K.A., Spencer, K.D. and Wideman, J.G. (2015) Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Current Biology, 25, 1489-1495.
Munoz-Gomez, S.A., Wideman, J.G., Roger, A.J. and Slamovits, C.H. (2017) The origin of mitochondrial cristae from alphaproteobacteria. Molecular Biology and Evolution, 34, 943-956.
Oberholzer, M., Morand, S., Kunz, S. and Seebeck, T. (2005) A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. Molecular and Biochemical Parasitology, 145, 117-120.
Ott, C., Dorsch, E., Fraunholz, M., Straub, S. and Kozjak-Pavlovic, V. (2015) Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits. PLoS ONE, 10, e0120213.
Peikert, C.D., Mani, J., Morgenstern, M., Käser, S., Knapp, B., Wenger, C., et al. (2017) Charting organellar importomes by quantitative mass spectrometry. Nature Communications, 8, 15272.
Quintana-Cabrera, R., Mehrotra, A., Rigoni, G. and Soriano, M.E. (2018) Who and how in the regulation of mitochondrial cristae shape and function. Biochemical and Biophysical Research Communications, 500, 94-101.
Rampelt, H., Zerbes, R.M., van der Laan, M. and Pfanner, N. (2017) Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochimica Biophysica Acta Mol Cell Res, 1864, 737-746.
Rappsilber, J., Mann, M. and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols, 2, 1896-1906.
Richardson, E., Zerr, K., Tsaousis, A., Dorrell, R.G. and Dacks, J.B. (2015) Evolutionary cell biology: functional insight from ‘endless forms most beautiful’. Molecular Biology of the Cell, 26, 4532-4538.
Schnarwiler, F., Niemann, M., Doiron, N., Harsman, A., Kaser, S., Mani, J., et al. (2014) Trypanosomal TAC40 constitutes a novel subclass of mitochondrial beta-barrel proteins specialized in mitochondrial genome inheritance. Proceedings of the National Academy of Science USA, 111, 7624-7629.
Schneider, A. (2018) Mitochondrial protein import in trypanosomatids: variations on a theme or fundamentally different? PLoS Pathogen, 14, e1007351.
Schorr, S. and van der Laan, M. (2018) Integrative functions of the mitochondrial contact site and cristae organizing system. Seminars in Cell and Developmental Biology, 76, 191-200.
Singha, U.K., Peprah, E., Williams, S., Walker, R., Saha, L. and Chaudhuri, M. (2008) Characterization of the mitochondrial inner membrane protein translocator Tim17 from Trypanosoma brucei. Molecular and Biochemical Parasitology, 159, 30-43.
Stojanovski, D., Bragoszewski, P. and Chacinska, A. (2012) The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. Biochimica Biophysica Acta, 1823, 1142-1150.
Tarasenko, D., Barbot, M., Jans, D.C., Kroppen, B., Sadowski, B., Heim, G., et al. (2017) The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology. Journal of Cell Biology, 216, 889-899.
Wenger, C., Oeljeklaus, S., Warscheid, B., Schneider, A. and Harsman, A. (2017) A trypanosomal orthologue of an intermembrane space chaperone has a non-canonical function in biogenesis of the single mitochondrial inner membrane protein translocase. PLoS Pathogen, 13, e1006550.
Wirtz, E., Leal, S., Ochatt, C. and Cross, G.A. (1999) A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Molecular and Biochemical Parasitology, 99, 89-101.
Wollweber, F., von der Malsburg, K. and van der Laan, M. (2017) Mitochondrial contact site and cristae organizing system: a central player in membrane shaping and crosstalk. Biochimica Biophysica Acta, 1864, 1481-1489.
Wrobel, L., Topf, U., Bragoszewski, P., Wiese, S., Sztolsztener, M.E., Oeljeklaus, S., et al. (2015) Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature, 524, 485-488.
Zerbes, R.M., Bohnert, M., Stroud, D.A., von der Malsburg, K., Kram, A., Oeljeklaus, S., et al. (2012) Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains. Journal of Molecular Biology, 422, 183-191.
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes
A parasite's take on the evolutionary cell biology of MICOS