A parasite's take on the evolutionary cell biology of MICOS

. 2019 Dec ; 15 (12) : e1008166. [epub] 20191219

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31856264
Odkazy

PubMed 31856264
PubMed Central PMC6922312
DOI 10.1371/journal.ppat.1008166
PII: PPATHOGENS-D-19-01720
Knihovny.cz E-zdroje

Zobrazit více v PubMed

Matthews KR (2015) 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol. Biochem. Parasitol. 200: 30–40. 10.1016/j.molbiopara.2015.01.006 PubMed DOI PMC

Keeling PJ, Burki F (2019) Progress towards the Tree of Eukaryotes. Curr. Biol. 29: R808–R817. 10.1016/j.cub.2019.07.031 PubMed DOI

Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, et al. (2018) The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr. Biol. 28: 3393–3407 e3395. 10.1016/j.cub.2018.09.008 PubMed DOI

Eichenberger C, Oeljeklaus S, Bruggisser J, Mani J, Haenni B, et al. (2019) The highly diverged trypanosomal MICOS complex is organized in a nonessential integral membrane and an essential peripheral module. Mol. Microbiol. 10.1111/mmi.14389 PubMed DOI

Arnold FH (2018) Directed Evolution: Bringing New Chemistry to Life. Angew. Chem. Int. Ed. Engl. 57: 4143–4148. 10.1002/anie.201708408 PubMed DOI PMC

Eme L, Sharpe SC, Brown MW, Roger AJ (2014) On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6. PubMed PMC

Lynch M, Field MC, Goodson HV, Malik HS, Pereira-Leal JB, et al. (2014) Evolutionary cell biology: two origins, one objective. Proc. Natl. Acad. Sci. U.S.A. 111: 16990–16994. 10.1073/pnas.1415861111 PubMed DOI PMC

Galperin MY, Koonin EV (2012) Divergence and Convergence in Enzyme Evolution. J. Biol. Chem. 287: 21–28. 10.1074/jbc.R111.241976 PubMed DOI PMC

Akiyoshi B, Gull K (2014) Discovery of Unconventional Kinetochores in Kinetoplastids. Cell 156: 1247–1258. 10.1016/j.cell.2014.01.049 PubMed DOI PMC

Obado SO, Brillantes M, Uryu K, Zhang W, Ketaren NE, et al. (2016) Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 14: e1002365 10.1371/journal.pbio.1002365 PubMed DOI PMC

Hirst J, Schlacht A, Norcott JP, Traynor D, Bloomfield G, et al. (2014) Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife 3: e02866 10.7554/eLife.02866 PubMed DOI PMC

Schneider A (2018) Mitochondrial protein import in trypanosomatids: Variations on a theme or fundamentally different? PLoS Pathog. 14: e1007351 10.1371/journal.ppat.1007351 PubMed DOI PMC

Wenger C, Oeljeklaus S, Warscheid B, Schneider A, Harsman A (2017) A trypanosomal orthologue of an intermembrane space chaperone has a non-canonical function in biogenesis of the single mitochondrial inner membrane protein translocase. PLoS Pathog. 13: e1006550 10.1371/journal.ppat.1006550 PubMed DOI PMC

Smith JT, Singha UK, Misra S, Chaudhuri M (2018) Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in Trypanosoma brucei. mSphere 3: e00204–00218. 10.1128/mSphere.00204-18 PubMed DOI PMC

Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, et al. (2013) Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48: 373–396. 10.3109/10409238.2013.821444 PubMed DOI PMC

Roger AJ, Munoz-Gomez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr. Biol. 27: 1177–1192. PubMed

Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J (2015) MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife 4: e07739. PubMed PMC

Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, et al. (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J. Struct. Biol. 119: 260–272. 10.1006/jsbi.1997.3885 PubMed DOI

Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J, et al. (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J. 30: 4356–4370. 10.1038/emboj.2011.379 PubMed DOI PMC

Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195: 323–340. 10.1083/jcb.201107053 PubMed DOI PMC

von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, et al. (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 21: 694–707. 10.1016/j.devcel.2011.08.026 PubMed DOI

Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, et al. (2014) Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J. Cell Biol. 204: 1083–1086. 10.1083/jcb.201401006 PubMed DOI PMC

Callegari S, Müller T, Schulz C, Lenz C, Jans DC, et al. (2019) A MICOS–TIM22 association promotes carrier import into human mitochondria. J. Mol. Biol. 431: 2835–2851. 10.1016/j.jmb.2019.05.015 PubMed DOI

Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, et al. (2015) Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr. Biol. 25: 1489–1495. 10.1016/j.cub.2015.04.006 PubMed DOI

Aaltonen MJ, Friedman JR, Osman C, Salin B, di Rago JP, et al. (2016) MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria. J. Cell Biol. 213: 525–534. 10.1083/jcb.201602007 PubMed DOI PMC

Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, et al. (2015) Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metab. 21: 756–763. 10.1016/j.cmet.2015.04.006 PubMed DOI

Bohnert M, Zerbes RM, Davies KM, Mühleip AW, Rampelt H, et al. (2015) Central role of Mic10 in the mitochondrial contact site and cristae organizing system. Cell Metab. 21: 747–755. 10.1016/j.cmet.2015.04.007 PubMed DOI

Wideman JG, Novick A, Muñoz-Gómez SA, Doolittle WF (2019) Neutral evolution of cellular phenotypes. Curr Opin Genet Dev 58–59: 87–94. 10.1016/j.gde.2019.09.004 PubMed DOI

Mordas A, Tokatlidis K (2015) The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Acc. Chem. Res. 48: 2191–2199. 10.1021/acs.accounts.5b00150 PubMed DOI PMC

Stojanovski D, Bragoszewski P, Chacinska A (2012) The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. Biochim. Biophys. Acta 1823: 1142–1150. 10.1016/j.bbamcr.2012.04.014 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...