A Novel Group of Dynamin-Related Proteins Shared by Eukaryotes and Giant Viruses Is Able to Remodel Mitochondria From Within the Matrix
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37279941
PubMed Central
PMC10280142
DOI
10.1093/molbev/msad134
PII: 7190697
Knihovny.cz E-zdroje
- Klíčová slova
- Nucleocytoviricota, Mgm1, Opa1, dynamin superfamily, mitochondria, protists,
- MeSH
- dynaminy genetika metabolismus MeSH
- fylogeneze MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- obří viry * genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dynaminy MeSH
- mitochondriální proteiny MeSH
The diverse GTPases of the dynamin superfamily play various roles in the cell, as exemplified by the dynamin-related proteins (DRPs) Mgm1 and Opa1, which remodel the mitochondrial inner membrane in fungi and metazoans, respectively. Via an exhaustive search of genomic and metagenomic databases, we found previously unknown DRP types occurring in diverse eukaryotes and giant viruses (phylum Nucleocytoviricota). One novel DRP clade, termed MidX, combined hitherto uncharacterized proteins from giant viruses and six distantly related eukaryote taxa (Stramenopiles, Telonemia, Picozoa, Amoebozoa, Apusomonadida, and Choanoflagellata). MidX stood out because it was not only predicted to be mitochondria-targeted but also to assume a tertiary structure not observed in other DRPs before. To understand how MidX affects mitochondria, we exogenously expressed MidX from Hyperionvirus in the kinetoplastid Trypanosoma brucei, which lacks Mgm1 or Opa1 orthologs. MidX massively affected mitochondrial morphology from inside the matrix, where it closely associates with the inner membrane. This unprecedented mode of action contrasts to those of Mgm1 and Opa1, which mediate inner membrane remodeling in the intermembrane space. We speculate that MidX was acquired in Nucleocytoviricota evolution by horizontal gene transfer from eukaryotes and is used by giant viruses to remodel host mitochondria during infection. MidX's unique structure may be an adaptation for reshaping mitochondria from the inside. Finally, Mgm1 forms a sister group to MidX and not Opa1 in our phylogenetic analysis, throwing into question the long-presumed homology of these DRPs with similar roles in sister lineages.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Abrahão J, Silva L, Silva LS, Khalil JYB, Rodrigues R, Arantes T, Assis F, Boratto P, Andrade M, Kroon EG, et al. . 2018. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun. 9:749. PubMed PMC
Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. 2019. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2:e201900429. PubMed PMC
Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol. 204:919–929. PubMed PMC
Andreani J, Schulz F, Di Pinto F, Levasseur A, Woyke T, La Scola B. 2021. Morphological and genomic features of the new Klosneuvirinae isolate Fadolivirus IHUMI-VV54. Front Microbiol. 12:719703. PubMed PMC
Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. 2021. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol. 19:e3001430. PubMed PMC
Azuma T, Pánek T, Tice AK, Kayama M, Kobayashi M, Miyashita H, Suzaki T, Yabuki A, Brown MW, Kamikawa R. 2022. An enigmatic stramenopile sheds light on early evolution in Ochrophyta plastid organellogenesis. Mol Biol Evol. 39:msac065. PubMed PMC
Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. 2016. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol. 14:e1002340. PubMed PMC
Bílý T, Sheikh S, Mallet A, Bastin P, Pérez-Morga D, Lukeš J, Hashimi H. 2021. Ultrastructural changes of the mitochondrion during the life cycle of Trypanosoma brucei. J Eukaryot Microbiol. 68:e12846. PubMed
Blum T, Briesemeister S, Kohlbacher O. 2009. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics 10:274. PubMed PMC
Bochud-Allemann N, Schneider A. 2002. Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei. J Biol Chem. 277:32849–32854. PubMed
Bohuszewicz O, Low HH. 2018. Structure of a mitochondrial fission dynamin in the closed conformation. Nat Struct Mol Biol. 25:722–731. PubMed PMC
Brahim Belhaouari D, Pires De Souza GA, Lamb DC, Kelly SL, Goldstone JV, Stegeman JJ, Colson P, La Scola B, Aherfi S. 2022. Metabolic arsenal of giant viruses: host hijack or self-use? eLife 11:e78674. PubMed PMC
Camargo AP, Nayfach S, Chen IMA, Palaniappan K, Ratner A, Chu K, Ritter Stephan J, Reddy TBK, Mukherjee S, Schulz F, et al. . 2023. IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res. 51:D733–D743. PubMed PMC
Da Cunha V, Gaia M, Ogata H, Jaillon O, Delmont TO, Forterre P. 2022. Giant viruses encode actin-related proteins. Mol Biol Evol. 39:msac022. PubMed PMC
Deerinck TJ, Bushong EA, Lev-Ram V, Shu X, Tsien RY, Ellisman MH. 2010. Enhancing serial block-face scanning electron microscopy to enable high resolution 3-D nanohistology of cells and tissues. Microsc Microanal. 16:1138–1139.
Delmont TO, Gaia M, Hinsinger DD, Frémont P, Vanni C, Fernandez-Guerra A, Eren AM, Kourlaiev A, d'Agata L, Clayssen Q, et al. . 2022. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genom. 2:100123. PubMed PMC
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol. 7:e1002195. PubMed PMC
Faelber K, Dietrich L, Noel JK, Wollweber F, Pfitzner A-K, Mühleip A, Sánchez R, Kudryashev M, Chiaruttini N, Lilie H, et al. . 2019. Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1. Nature 571:429–433. PubMed PMC
Findinier J, Delevoye C, Cohen MM. 2019. The dynamin-like protein Fzl promotes thylakoid fusion and resistance to light stress in Chlamydomonas reinhardtii. PLoS Genet. 15:e1008047. PubMed PMC
Fischer MG, Kelly I, Foster LJ, Suttle CA. 2014. The virion of Cafeteria roenbergensis virus (CroV) contains a complex suite of proteins for transcription and DNA repair. Virology 466–467:82–94. PubMed
Flaspohler JA, Jensen BC, Saveria T, Kifer CT, Parsons M. 2010. A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell 9:1702–1710. PubMed PMC
Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. 2015. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 14:1113–1126. PubMed PMC
Harper CB, Popoff MR, McCluskey A, Robinson PJ, Meunier FA. 2013. Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors. Trends Cell Biol. 23:90–101. PubMed
Hashimi H. 2019. A parasite's take on the evolutionary cell biology of MICOS. PLoS Pathog. 15:e1008166. PubMed PMC
Hawkins J, Bodén M. 2006. Detecting and sorting targeting peptides with neural networks and support vector machines. J Bioinform Comput Biol. 4:1–18. PubMed
Herlan M, Vogel F, Bornhövd C, Neupert W, Reichert AS. 2003. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem. 278:27781–27788. PubMed
Hughes L, Hawes C, Monteith S, Vaughan S. 2014. Serial block face scanning electron microscopy—the future of cell ultrastructure imaging. Protoplasma 251:395–401. PubMed
Imoto Y, Itoh K, Fujiki Y. 2020. Molecular basis of mitochondrial and peroxisomal division machineries. Int J Mol Sci. 21:5452. PubMed PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. . 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. PubMed PMC
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, Barlow LD, Herman EK, Pipaliya SV, Pánek T, et al. . 2019. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol Biol Evol. 36:2292–2312. PubMed PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. PubMed PMC
Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bílý T, Potěšil D, Eichenberger C, Bruce H, Oeljeklaus S, et al. . 2018. The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr Biol. 28:3393–3407.e5. PubMed
Ketter E, Randall G. 2019. Virus impact on lipids and membranes. Annu Rev Virol. 6:319–340. PubMed
Khalifeh D, Neveu E, Fasshauer D. 2022. Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors. Traffic 23:414–425. PubMed PMC
Kijima S, Delmont TO, Miyazaki U, Gaia M, Endo H, Ogata H. 2021. Discovery of viral myosin genes with complex evolutionary history within plankton. Front Microbiol. 12:683294. PubMed PMC
Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH. 2020. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 84:e00061-19. PubMed PMC
Koonin EV, Yutin N. 2019. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv Virus Res. 103:167–202. PubMed
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 305:567–580. PubMed
Kume K, Amagasa T, Hashimoto T, Kitagawa H. 2018. NommPred: prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol Bioinform Online. 14:1176934318819835. PubMed PMC
Kutsch M, Coers J. 2021. Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS J. 288:5826–5849. PubMed PMC
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 2014. Upset: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 20:1983–1992. PubMed PMC
López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, Ruiz-Trillo I. 2019. Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals. Philos Trans R Soc B Biol Sci. 374:20190088. PubMed PMC
Low HH, Löwe J. 2006. A bacterial dynamin-like protein. Nature 444:766–769. PubMed
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 37:1530–1534. PubMed PMC
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. Colabfold: making protein folding accessible to all. Nat Methods. 19:679–682. PubMed PMC
Moniruzzaman M, Martinez-Gutierrez CA, Weinheimer AR, Aylward FO. 2020. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat Commun. 11:1710. PubMed PMC
Morales J, Ehret G, Poschmann G, Reinicke T, Maurya AK, Kröninger L, Zanini D, Wolters R, Kalyanaraman D, Krakovka M, et al. . 2023. Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site. Curr Biol. 33:28–40.e27. PubMed
Moyersoen J, Choe J, Fan E, Hol WG, Michels PA. 2004. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev. 28:603–643. PubMed
Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, Wideman JG. 2015. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr Biol. 25:1489–1495. PubMed
Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. 2020. Returning to the fold for lessons in mitochondrial crista diversity and evolution. Curr Biol. 30:R575–R588. PubMed
Panigrahi AK, Zíková A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ, Stuart KD. 2008. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics. 7:534–545. PubMed
Patil M, Seifert S, Seiler F, Soll J, Schwenkert S. 2018. FZL is primarily localized to the inner chloroplast membrane however influences thylakoid maintenance. Plant Mol Biol. 97:421–433. PubMed
Pei J, Kim B-H, Grishin NV. 2008. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36:2295–2300. PubMed PMC
Pernas L, Scorrano L. 2016. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 78:505–531. PubMed
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30:70–82. PubMed PMC
Poon SK, Peacock L, Gibson W, Gull K, Kelly S. 2012. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2:110037. PubMed PMC
Praefcke GJK, McMahon HT. 2004. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol. 5:133–147. PubMed
Price MN, Dehal PS, Arkin AP. 2010. Fasttree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. PubMed PMC
Purkanti R, Thattai M. 2015. Ancient dynamin segments capture early stages of host–mitochondrial integration. Proc Natl Acad Sci USA. 112:2800–2805. PubMed PMC
Ramachandran R, Schmid SL. 2018. The dynamin superfamily. Curr Biol. 28:R411–R416. PubMed
Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, de Vargas C. 2022. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2:e56.
Rodrigues RAL, de Souza FG, de Azevedo BL, da Silva LCF, Abrahão JS. 2021. The morphogenesis of different giant viruses as additional evidence for a common origin of Nucleocytoviricota. Curr Opin Virol. 49:102–110. PubMed
Rolland C, Andreani J, Sahmi-Bounsiar D, Krupovic M, La Scola B, Levasseur A. 2021. Clandestinovirus: a giant virus with chromatin proteins and a potential to manipulate the cell cycle of its host Vermamoeba vermiformis. Front Microbiol. 12:715608. PubMed PMC
Rout MP, Field MC. 2017. The evolution of organellar coat complexes and organization of the eukaryotic cell. Annu Rev Biochem. 86:637–657. PubMed
Santos HJ, Makiuchi T, Nozaki T. 2018. Reinventing an organelle: the reduced mitochondrion in parasitic protists. Trends Parasitol. 34:1038–1055. PubMed
Savojardo C, Bruciaferri N, Tartari G, Martelli PL, Casadio R. 2020. DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks. Bioinformatics 36:56–64. PubMed PMC
Schulz F, Abergel C, Woyke T. 2022. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol. 20:721–736. PubMed
Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ, McMahon KD, Konstantinidis KT, Eloe-Fadrosh EA, Kyrpides NC, et al. . 2020. Giant virus diversity and host interactions through global metagenomics. Nature 578:432–436. PubMed PMC
Sinha S, Manoj N. 2019. Molecular evolution of proteins mediating mitochondrial fission–fusion dynamics. FEBS Lett. 593:703–718. PubMed
Small I, Peeters N, Legeai F, Lurin C. 2004. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590. PubMed
Tetley L, Vickerman K. 1991. The glycosomes of trypanosomes: number and distribution as revealed by electron spectroscopic imaging and 3-D reconstruction. J Microsc. 162:83–90. PubMed
Thumuluri V, Almagro Armenteros JJ, Johansen Alexander R, Nielsen H, Winther O. 2022. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 50:W228–W234. PubMed PMC
Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, Burki F, Eliáš M, Eme L, Roger AJ, et al. . 2021. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19:e3001365. PubMed PMC
Tikhonenkov DV, Jamy M, Borodina AS, Belyaev AO, Zagumyonnyi DG, Prokina KI, Mylnikov AP, Burki F, Karpov SA. 2022. On the origin of TSAR: morphology, diversity and phylogeny of Telonemia. Open Biol. 12:210325. PubMed PMC
Tikhonenkov DV, Mikhailov KV, Gawryluk RMR, Belyaev AO, Mathur V, Karpov SA, Zagumyonnyi DG, Borodina AS, Prokina KI, Mylnikov AP, et al. . 2022. Microbial predators form a new supergroup of eukaryotes. Nature 612:714–719. PubMed
Vorobev A, Dupouy M, Carradec Q, Delmont TO, Annamalé A, Wincker P, Pelletier E. 2020. Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics. Genome Res. 30:647–659. PubMed PMC
Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST, Reichert AS, van der Bliek AM, Shackelford DB, Liesa M, Shirihai OS. 2019. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J. 38:e101056. PubMed PMC
Yan L, Qi Y, Ricketson D, Li L, Subramanian K, Zhao J, Yu C, Wu L, Sarsam R, Wong M, et al. . 2020. Structural analysis of a trimeric assembly of the mitochondrial dynamin-like GTPase Mgm1. Proc Natl Acad Sci USA. 117:4061–4070. PubMed PMC
Zhang D, Zhang Y, Ma J, Zhu C, Niu T, Chen W, Pang X, Zhai Y, Sun F. 2020. Cryo-EM structures of S-OPA1 reveal its interactions with membrane and changes upon nucleotide binding. eLife 9:e50294. PubMed PMC
figshare
10.6084/m9.figshare.22769669