Ultrastructural Changes of the Mitochondrion During the Life Cycle of Trypanosoma brucei

. 2021 May ; 68 (3) : e12846. [epub] 20210319

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33624359

The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here, we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.

Zobrazit více v PubMed

Barrett, M. P., Burchmore, R. J., Stich, A., Lazzari, J. O., Frasch, A. C., Cazzulo, J. J. & Krishna, S. 2003. The trypanosomiases. Lancet, 362:1469-1480.

Bertiaux, E., Mallet, A., Fort, C., Blisnick, T., Bonnefoy, S., Jung, J., Lemos, M., Marco, S., Vaughan, S. & Trépout, S. 2018. Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum. J. Cell Biol., 217:4284-4297.

Bleazard, W., McCaffery, J. M., King, E. J., Bale, S., Mozdy, A., Tieu, Q., Nunnari, J. & Shaw, J. M. 1999. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol., 1:298-304.

Böhringer, S. & Hecker, H. 1975. Quantitative ultrastructural investigations of the life cycle of Trypanosoma brucei: a morphometric analysis. The Journal of Protozoology, 22:463-467.

Brown, R. C., Evans, D. A. & Vickerman, K. 1973. Changes in oxidative metabolism and ultrastructure accompanying differentiation of the mitochondrion in Trypanosoma brucei. Int. J. Parasitol., 3:691-704.

DiMaio, J., Ruthel, G., Cannon, J. J., Malfara, M. F. & Povelones, M. L. 2018. The single mitochondrion of the kinetoplastid parasite Crithidia fasciculata is a dynamic network. PLoS One, 13:e0202711.

Dlasková, A., Špaček, T., Engstová, H., Špačková, J., Schröfel, A., Holendová, B., Smolková, K., Plecitá-Hlavatá, L. & Ježek, P. 2019. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Biophys. Acta Bioenerget., 1860(8):659-678.

Doleželová, E., Kunzová, M., Dejung, M., Levin, M., Panicucci, B., Regnault, C., Janzen, C. J., Barrett, M. P., Butter, F. & Zíková, A. 2020. Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biol., 18:e3000741.

Fontaine, F., Lecordier, L., Vanwalleghem, G., Uzureau, P., Van Reet, N., Fontaine, M., Tebabi, P., Vanhollebeke, B., Büscher, P. & Pérez-Morga, D. 2017. APOLs with low pH dependence can kill all African trypanosomes. Nat. Microbiol., 2:1500-1506.

Ghiotto, V., Brun, R., Jenni, L. & Hecker, H. 1979. Trypanosoma brucei: morphometric changes and loss of infectivity during transformation of bloodstream forms to procyclic culture forms in vitro. Exp. Parasitol., 48:447-456.

Hackenbrock, C. R. 1966. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J. Cell. Biol., 30:269-297.

Hashimi, H. 2019. A parasite’s take on the evolutionary cell biology of MICOS. PLoS Pathog., 15:e1008166.

Horvath, A., Horakova, E., Dunajcikova, P., Verner, Z., Pravdova, E., Slapetova, I., Cuninkova, L. & Lukes, J. 2005. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol. Microbiol., 58:116-130.

Hughes, L., Borrett, S., Towers, K., Starborg, T. & Vaughan, S. 2017. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J. Cell Sci., 130:637-647.

Jakob, M., Hoffmann, A., Amodeo, S., Peitsch, C., Zuber, B. & Ochsenreiter, T. 2016. Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Sci. Rep., 6:1-13.

Jensen, R. E. & Englund, P. T. 2012. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol., 66:473-491.

Kaurov, I., Vancová, M., Schimanski, B., Cadena, L. R., Heller, J., Bílý, T., Potěšil, D., Eichenberger, C., Bruce, H., Oeljeklaus, S., Warscheid, B., Zdráhal, Z., Schneider, A., Lukeš, J. & Hashimi, H. 2018. The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr. Biol., 28:3393-3407 e5.

Kizilyaprak, C., Bittermann, A. G., Daraspe, J. & Humbel, B. M. 2014. FIB-SEM tomography in biology. In: Kuo, J. (ed.), Electron Microscopy: Methods and Protocols. Humana Press, Totowa, NJ. p. 541-558.

Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. 1996. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol., 116:71-76.

Mannella, C. A. 2020. Consequences of folding the mitochondrial inner membrane. Front. Physiol., 11:536.

Martínez-Calvillo, S., Florencio-Martínez, L. E. & Nepomuceno-Mejía, T. 2019. Nucleolar structure and function in trypanosomatid protozoa. Cells, 8:421.

Matthews, K. R. & Gull, K. 1994. Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes. J. Cell. Biol., 125:1147-1156.

Mühleip, A. W., Dewar, C. E., Schnaufer, A., Kühlbrandt, W. & Davies, K. M. 2017. In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits. Proc. Natl Acad. Sci. USA, 114:992-997.

Nepomuceno-Mejía, T., Florencio-Martínez, L. E. & Martínez-Calvillo, S. 2018. Nucleolar division in the promastigote stage of leishmania major parasite: a Nop56 point of view. Biomed. Res. Int., 2018:1641839.

Pánek, T., Eliáš, M., Vancová, M., Lukeš, J. & Hashimi, H. 2020. Returning to the fold for lessons in mitochondrial crista diversity and evolution. Curr. Biol., 30:R575-R588.

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9:671-675.

Steyer, A. M., Ruhwedel, T., Nardis, C., Werner, H. B., Nave, K.-A. & Möbius, W. 2020. Pathology of myelinated axons in the PLP-deficient mouse model of spastic paraplegia type 2 revealed by volume imaging using focused ion beam-scanning electron microscopy. J. Struct. Biol., 210:107492.

Tan, Y. H., Liu, M., Nolting, B., Go, J. G., Gervay-Hague, J. & Liu, G.-Y. 2008. A nanoengineering approach for investigation and regulation of protein immobilization. ACS Nano, 2:2374-2384.

Vanwalleghem, G., Fontaine, F., Lecordier, L., Tebabi, P., Klewe, K., Nolan, D. P., Yamaryo-Botté, Y., Botté, C., Kremer, A. & Burkard, G. S. 2015. Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat. Commun., 6:1-10.

Verner, Z., Basu, S., Benz, C., Dixit, S., Dobáková, E., Faktorová, D., Hashimi, H., Horáková, E., Huang, Z., Paris, Z., Pena-Diaz, P., Ridlon, L., Týč, J., Wildridge, D., Zíková, A. & Lukeš, J. 2015. Malleable mitochondrion of Trypanosoma brucei. Int. Rev. Cell Mol. Biol., 315:73-151.

Vickerman, K. 1985. Developmental cycles and biology of pathogenic trypanosomes. Br. Med. Bull., 41:105-114.

Wolf, D. M., Segawa, M., Kondadi, A. K., Anand, R., Bailey, S. T., Reichert, A. S., van der Bliek, A. M., Shackelford, D. B., Liesa, M. & Shirihai, O. S. 2019. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J., 38:e101056.

Zíková, A., Verner, Z., Nenarokova, A., Michels, P. A. M. & Lukeš, J. 2017. A paradigm shift: the mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog., 13:e1006679.

Zoltner, M., Horn, D., de Koning, H. P. & Field, M. C. 2016. Exploiting the Achilles’ heel of membrane trafficking in trypanosomes. Curr. Opin. Microbiol., 34:97-103.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...