An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis

. 2022 Apr 11 ; 39 (4) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35348760

Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host-plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions.

Zobrazit více v PubMed

Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, et al. . 2004. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445. PubMed

Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. . 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 66:4–119. PubMed PMC

Andersen RA. 2004. Biology and systematics of heterokont and haptophyte algae. Am J Bot. 91:1508–1522. PubMed

Biswas A, Elmatari D, Rothman J, LaMunyon CW, Said HM. 2013. Identification and functional characterization of the Caenorhabditis elegans riboflavin transporters rft-1 and rft-2. PLoS One 8:e58190. PubMed PMC

Bringloe TT, Starko S, Wade RM, Vieira C, Kawai H, De Clerck O, Cock JM, Coelho SM, Destombe C, Valero M, et al. . 2020. Phylogeny and evolution of the brown algae. Crit Rev Plant Sci. 39:281–321.

Burki F, Flegontov P, Oborník M, Cihlář J, Pain A, Lukeš J, Keeling PJ. 2012. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol Evol. 4:626–635. PubMed PMC

Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ. 2016. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802. PubMed PMC

Cavalier-Smith T, Chao EE-Y. 2006. Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J Mol Evol. 62:388–420. PubMed

Cavalier-Smith T, Scoble JM. 2013. Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. Eur J Protistol. 49:328–353. PubMed

Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E, Chabi M, Djemiel C, et al. . 2018. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biol. 16:137. PubMed PMC

Derelle R, López-García P, Timpano H, Moreira D. 2016. A phylogenomic framework to study the diversity and evolution of stramenopiles (=heterokonts). Mol Biol Evol. 33:2890–2898. PubMed PMC

Derevnina L, Petre B, Kellner R, Dagdas YF, Sarowar MN, Giannakopoulou A, De La Concepcion JC, Chaparro-Garcia A, Pennington HG, Van West P, et al. . 2016. Emerging oomycete threats to plants and animals. Phil Trans R Soc B Biol Sci. 371:20150459. PubMed PMC

Di Franco A, Baurain D, Glöckner G, Melkonian M, Philippe H. 2022. Lower statistical support with larger data sets: insights from the Ochrophyta radiation. Mol Biol Evol. 39:msab300. PubMed PMC

Dorrell RG, Azuma T, Nomura M, Audren De Kerdrel G, Paoli L, Yang S, Bowler C, Ishii K-i, Miyashita H, Gile GH, et al. . 2019. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A. 116:6914–6923. PubMed PMC

Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. 2017. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6:e23717. PubMed PMC

Dorrell RG, Villain A, Perez-Lamarque B, Audren De Kerdrel G, McCallum G, Watson AK, Ait-Mohamed O, Alberti A, Corre E, Frischkorn KR, et al. . 2021. Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci U S A. 118:e2009974118. PubMed PMC

Duchêne A-M, Giritch A, Hoffmann B, Cognat V, Lancelin D, Peeters NM, Zaepfel M, Maréchal-Drouard L, Small ID. 2005. Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 102:16484–16489. PubMed PMC

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. PubMed

Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. 2019. Non-photosynthetic predators are sister to red algae. Nature 572:240–243. PubMed

Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, Herman EK, Eme L, Arias MC, Henrissat B, et al. . 2017. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol. 15:e2003769. PubMed PMC

Gile GH, Moog D, Slamovits CH, Maier U-G, Archibald JM. 2015. Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol Evol. 7:1728–1742. PubMed PMC

Gornik SG, Febrimarsa, Cassin AM, MaCrae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A, et al. . 2015. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A. 112:5767–5772. PubMed PMC

Gould SB, Waller RF, McFadden GI. 2008. Plastid evolution. Annu Rev Plant Biol. 59:491–517. PubMed

Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. 2015. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 81:519–528. PubMed PMC

Hirakawa Y, Burki F, Keeling PJ. 2012. Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes. J Cell Sci. 125:6176–6184. PubMed

Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD. 2008. The origin of plastids. Philos Trans R Soc B Biol Sci. 363:2675–2685. PubMed PMC

Irisarri I, Strassert JFH, Burki F. 2022. Phylogenomic insights into the origin of primary plastids. Syst Biol. 71:105–120. PubMed

Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. 2019. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife 8:e49662. PubMed PMC

Kamikawa R, Moog D, Zauner S, Tanifuji G, Ishida K-I, Miyashita H, Mayama S, Hashimoto T, Maier UG, Archibald JM, et al. . 2017. A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol. 34:2355–2366. PubMed

Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. 2020. Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-Glu-based organellar heme biosynthesis. Front Plant Sci. 11:602455. PubMed PMC

Kleffmann T, Russenberger D, Von Zychlinski A, Christopher W, Sjölander K, Gruissem W, Baginsky S. 2004. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol. 14:354–362. PubMed

Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, et al. . 2008. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426. PubMed PMC

Larkum AWD, Lockhart PJ, Howe CJ. 2007. Shopping for plastids. Trends Plant Sci. 12:189–195. PubMed

Maier UG, Zauner S, Hempel F. 2015. Protein import into complex plastids: cellular organization of higher complexity. Eur J Cell Biol. 94:340–348. PubMed

Mann DG. 1999. The species concept in diatoms. Phycologia 38:437–495.

Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H. 2011. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol. 11:105. PubMed PMC

Mikrjukov KA, Patterson DJ. 2001. Taxonomy and phylogeny of Heliozoa. III. Actinophryids. Acta Protozool. 40:3–25.

Moog D, Nozawa A, Tozawa Y, Kamikawa R. 2020. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids. Sci Rep. 10:1167. PubMed PMC

Moog D, Rensing SA, Archibald JM, Maier UG, Ullrich KK. 2015. Localization and evolution of putative triose phosphate translocators in the diatom Phaeodactylum tricornutum. Genome Biol Evol. 7:2955–2969. PubMed PMC

Moog D, Stork S, Zauner S, Maier U-G. 2011. In silico and in vivo investigations of proteins of a minimized eukaryotic cytoplasm. Genome Biol Evol. 3:375–382. PubMed PMC

Moore KR, Magnabosco C, Momper L, Gold DA, Bosak T, Fournier GP. 2019. An expanded ribosomal phylogeny of cyanobacteria supports a deep placement of plastids. Front Microbiol. 10:1612. PubMed PMC

Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D. 2009. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726. PubMed

Nikolaev SI, Berney CFahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J. 2004. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A. 101:8066–8071. PubMed PMC

Noguchi F, Tanifuji G, Brown MW, Fujikura K, Takishita K. 2016. Complex evolution of two types of cardiolipin synthase in the eukaryotic lineage stramenopiles. Mol Phylogenet Evol. 101:133–141. PubMed

Ockleford CD, Tucker JB. 1973. Growth, breakdown, repair, and rapid contraction of microtubular axopodia in the heliozoan Actinophrys sol. J Ultrastruct Res. 44:369–387. PubMed

Osborne AR, Rapoport TA, van den Berg B. 2005. Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol. 21:529–550. PubMed

Parfrey LW, Lahr DJG, Knoll AH, Katz LA. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A. 108:13624–13629. PubMed PMC

Payne SH, Loomis WF. 2006. Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryot Cell 5:272–276. PubMed PMC

Plaxton WC. 1996. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol. 47:185–214. PubMed

Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. 2017. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol. 27:386–391. PubMed PMC

Ponce-Toledo RI, López-García P, Moreira D. 2019. Horizontal and endosymbiotic gene transfer in early plastid evolution. New Phytol. 224:618–624. PubMed PMC

Prihoda J, Tanaka A, De Paula WBM, Allen JF, Tirichine L, Bowler C. 2012. Chloroplast-mitochondria cross-talk in diatoms. J Exp Bot. 63:1543–1557. PubMed

Rao AU, Carta LK, Lesuisse E, Hamza I. 2005. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci U S A. 102:4270–4275. PubMed PMC

Riisberg I, Orr RJS, Kluge R, Shalchian-Tabrizi K, Bowers HA, Patil V, Edvardsen B, Jakobsen KS. 2009. Seven gene phylogeny of heterokonts. Protist 160:191–204. PubMed

Rokov-Plavec J, Dulic M, Duchêne AM, Weygand-Durasevic I. 2008. Dual targeting of organellar seryl-tRNA synthetase to maize mitochondria and chloroplasts. Plant Cell Rep. 27:1157–1168. PubMed

Sakaguchi M, Hausmann K, Suzaki T. 1998. Food capture and adhesion by the heliozoon Actinophrys sol. Protoplasma 203:130–137.

Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S, Mathur V, Strassert JFH, Pinhassi J, Worden AZ, Keeling PJ, et al. . 2021. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun. 12:6651. PubMed PMC

Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, et al. . 2015. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep. 5:10134. PubMed PMC

Shih PM, Matzke NJ. 2013. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc Natl Acad Sci U S A. 110:12355–12360. PubMed PMC

Sibbald SJ, Archibald JM. 2020. Genomic insights into plastid evolution. Genome Biol Evol. 12:978–990. PubMed PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. PubMed

Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C. 2009. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10:484. PubMed PMC

Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, Huang J. 2014. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun. 5:5764. PubMed PMC

Stork S, Lau J, Moog D, Maier UG. 2013. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. Protoplasma 250:1013–1023. PubMed

Strassert JFH, Irisarri I, Williams TA, Burki F. 2021. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun. 12:1879. PubMed PMC

Subramanian VS, Subramanya SB, Rapp L, Marchant JS, Ma TY, Said HM. 2011. Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. Biochim Biophys Acta 1808:3016–3021. PubMed PMC

Suzaki T, Shigenaka Y, Watanabe S, Toyohara A. 1980. Food capture and ingestion in the large heliozoan, Echinosphaerium nucleofilum. J Cell Sci. 42:61–79. PubMed

Tan KSW. 2008. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin Microbiol Rev. 21:639–665. PubMed PMC

Tanaka T, Maeda Y, Veluchamy A, Tanaka M, Abida H, Maréchal E, Bowler C, Muto M, Sunaga Y, Tanaka M, et al. . 2015. Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Plant Cell 27:162–176. PubMed PMC

Thakur R, Shiratori T, Ishida K-I. 2019. Taxon-rich multigene phylogenetic analyses resolve the phylogenetic relationship among deep-branching stramenopiles. Protist 170:125682. PubMed

Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, Burki F, Eliáš M, Eme L, Roger AJ, et al. . 2021. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19:e3001365. PubMed PMC

Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, et al. . 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266. PubMed

Waller RF, Gornik SG, Koreny L, Pain A. 2016. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol. 9:e1116653. PubMed PMC

Wang H-C, Minh B-Q, Susko E, Roger AJ. 2018. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 67:216–235. PubMed

Wang Q, Sun H, Huang J. 2017. Re-analyses of “algal” genes suggest a complex evolutionary history of oomycetes. Front Plant Sci. 8:1540. PubMed PMC

Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19:153. PubMed PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.19514266.v2

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace