An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
PubMed
35348760
PubMed Central
PMC9004409
DOI
10.1093/molbev/msac065
PII: 6555011
Knihovny.cz E-zdroje
- Klíčová slova
- Actinophryidae, aminoacyl-tRNA synthase, gene transfer, organellar DNA, phylogenomics, plastid evolution,
- MeSH
- ekosystém MeSH
- fylogeneze MeSH
- genom plastidový * MeSH
- Heterokontophyta * genetika MeSH
- molekulární evoluce MeSH
- plastidy genetika MeSH
- rostliny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host-plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions.
Department of Biological Sciences Mississippi State University Mississippi State MS USA
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Graduate School of Agriculture Kyoto University Kitashirakawa oiwake cho Sakyo ku Kyoto Japan
Graduate School of Science Kobe University Hyogo Japan
Japan Agency for Marine Earth Science and Technology Yokosuka Japan
Zobrazit více v PubMed
Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, et al. . 2004. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445. PubMed
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. . 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 66:4–119. PubMed PMC
Andersen RA. 2004. Biology and systematics of heterokont and haptophyte algae. Am J Bot. 91:1508–1522. PubMed
Biswas A, Elmatari D, Rothman J, LaMunyon CW, Said HM. 2013. Identification and functional characterization of the Caenorhabditis elegans riboflavin transporters rft-1 and rft-2. PLoS One 8:e58190. PubMed PMC
Bringloe TT, Starko S, Wade RM, Vieira C, Kawai H, De Clerck O, Cock JM, Coelho SM, Destombe C, Valero M, et al. . 2020. Phylogeny and evolution of the brown algae. Crit Rev Plant Sci. 39:281–321.
Burki F, Flegontov P, Oborník M, Cihlář J, Pain A, Lukeš J, Keeling PJ. 2012. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol Evol. 4:626–635. PubMed PMC
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ. 2016. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802. PubMed PMC
Cavalier-Smith T, Chao EE-Y. 2006. Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J Mol Evol. 62:388–420. PubMed
Cavalier-Smith T, Scoble JM. 2013. Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. Eur J Protistol. 49:328–353. PubMed
Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E, Chabi M, Djemiel C, et al. . 2018. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biol. 16:137. PubMed PMC
Derelle R, López-García P, Timpano H, Moreira D. 2016. A phylogenomic framework to study the diversity and evolution of stramenopiles (=heterokonts). Mol Biol Evol. 33:2890–2898. PubMed PMC
Derevnina L, Petre B, Kellner R, Dagdas YF, Sarowar MN, Giannakopoulou A, De La Concepcion JC, Chaparro-Garcia A, Pennington HG, Van West P, et al. . 2016. Emerging oomycete threats to plants and animals. Phil Trans R Soc B Biol Sci. 371:20150459. PubMed PMC
Di Franco A, Baurain D, Glöckner G, Melkonian M, Philippe H. 2022. Lower statistical support with larger data sets: insights from the Ochrophyta radiation. Mol Biol Evol. 39:msab300. PubMed PMC
Dorrell RG, Azuma T, Nomura M, Audren De Kerdrel G, Paoli L, Yang S, Bowler C, Ishii K-i, Miyashita H, Gile GH, et al. . 2019. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A. 116:6914–6923. PubMed PMC
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. 2017. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6:e23717. PubMed PMC
Dorrell RG, Villain A, Perez-Lamarque B, Audren De Kerdrel G, McCallum G, Watson AK, Ait-Mohamed O, Alberti A, Corre E, Frischkorn KR, et al. . 2021. Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci U S A. 118:e2009974118. PubMed PMC
Duchêne A-M, Giritch A, Hoffmann B, Cognat V, Lancelin D, Peeters NM, Zaepfel M, Maréchal-Drouard L, Small ID. 2005. Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 102:16484–16489. PubMed PMC
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. PubMed
Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. 2019. Non-photosynthetic predators are sister to red algae. Nature 572:240–243. PubMed
Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, Herman EK, Eme L, Arias MC, Henrissat B, et al. . 2017. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol. 15:e2003769. PubMed PMC
Gile GH, Moog D, Slamovits CH, Maier U-G, Archibald JM. 2015. Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol Evol. 7:1728–1742. PubMed PMC
Gornik SG, Febrimarsa, Cassin AM, MaCrae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A, et al. . 2015. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A. 112:5767–5772. PubMed PMC
Gould SB, Waller RF, McFadden GI. 2008. Plastid evolution. Annu Rev Plant Biol. 59:491–517. PubMed
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. 2015. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 81:519–528. PubMed PMC
Hirakawa Y, Burki F, Keeling PJ. 2012. Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes. J Cell Sci. 125:6176–6184. PubMed
Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD. 2008. The origin of plastids. Philos Trans R Soc B Biol Sci. 363:2675–2685. PubMed PMC
Irisarri I, Strassert JFH, Burki F. 2022. Phylogenomic insights into the origin of primary plastids. Syst Biol. 71:105–120. PubMed
Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. 2019. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife 8:e49662. PubMed PMC
Kamikawa R, Moog D, Zauner S, Tanifuji G, Ishida K-I, Miyashita H, Mayama S, Hashimoto T, Maier UG, Archibald JM, et al. . 2017. A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol. 34:2355–2366. PubMed
Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. 2020. Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-Glu-based organellar heme biosynthesis. Front Plant Sci. 11:602455. PubMed PMC
Kleffmann T, Russenberger D, Von Zychlinski A, Christopher W, Sjölander K, Gruissem W, Baginsky S. 2004. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol. 14:354–362. PubMed
Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, et al. . 2008. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426. PubMed PMC
Larkum AWD, Lockhart PJ, Howe CJ. 2007. Shopping for plastids. Trends Plant Sci. 12:189–195. PubMed
Maier UG, Zauner S, Hempel F. 2015. Protein import into complex plastids: cellular organization of higher complexity. Eur J Cell Biol. 94:340–348. PubMed
Mann DG. 1999. The species concept in diatoms. Phycologia 38:437–495.
Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H. 2011. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol. 11:105. PubMed PMC
Mikrjukov KA, Patterson DJ. 2001. Taxonomy and phylogeny of Heliozoa. III. Actinophryids. Acta Protozool. 40:3–25.
Moog D, Nozawa A, Tozawa Y, Kamikawa R. 2020. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids. Sci Rep. 10:1167. PubMed PMC
Moog D, Rensing SA, Archibald JM, Maier UG, Ullrich KK. 2015. Localization and evolution of putative triose phosphate translocators in the diatom Phaeodactylum tricornutum. Genome Biol Evol. 7:2955–2969. PubMed PMC
Moog D, Stork S, Zauner S, Maier U-G. 2011. In silico and in vivo investigations of proteins of a minimized eukaryotic cytoplasm. Genome Biol Evol. 3:375–382. PubMed PMC
Moore KR, Magnabosco C, Momper L, Gold DA, Bosak T, Fournier GP. 2019. An expanded ribosomal phylogeny of cyanobacteria supports a deep placement of plastids. Front Microbiol. 10:1612. PubMed PMC
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D. 2009. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726. PubMed
Nikolaev SI, Berney CFahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J. 2004. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A. 101:8066–8071. PubMed PMC
Noguchi F, Tanifuji G, Brown MW, Fujikura K, Takishita K. 2016. Complex evolution of two types of cardiolipin synthase in the eukaryotic lineage stramenopiles. Mol Phylogenet Evol. 101:133–141. PubMed
Ockleford CD, Tucker JB. 1973. Growth, breakdown, repair, and rapid contraction of microtubular axopodia in the heliozoan Actinophrys sol. J Ultrastruct Res. 44:369–387. PubMed
Osborne AR, Rapoport TA, van den Berg B. 2005. Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol. 21:529–550. PubMed
Parfrey LW, Lahr DJG, Knoll AH, Katz LA. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A. 108:13624–13629. PubMed PMC
Payne SH, Loomis WF. 2006. Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryot Cell 5:272–276. PubMed PMC
Plaxton WC. 1996. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol. 47:185–214. PubMed
Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. 2017. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol. 27:386–391. PubMed PMC
Ponce-Toledo RI, López-García P, Moreira D. 2019. Horizontal and endosymbiotic gene transfer in early plastid evolution. New Phytol. 224:618–624. PubMed PMC
Prihoda J, Tanaka A, De Paula WBM, Allen JF, Tirichine L, Bowler C. 2012. Chloroplast-mitochondria cross-talk in diatoms. J Exp Bot. 63:1543–1557. PubMed
Rao AU, Carta LK, Lesuisse E, Hamza I. 2005. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci U S A. 102:4270–4275. PubMed PMC
Riisberg I, Orr RJS, Kluge R, Shalchian-Tabrizi K, Bowers HA, Patil V, Edvardsen B, Jakobsen KS. 2009. Seven gene phylogeny of heterokonts. Protist 160:191–204. PubMed
Rokov-Plavec J, Dulic M, Duchêne AM, Weygand-Durasevic I. 2008. Dual targeting of organellar seryl-tRNA synthetase to maize mitochondria and chloroplasts. Plant Cell Rep. 27:1157–1168. PubMed
Sakaguchi M, Hausmann K, Suzaki T. 1998. Food capture and adhesion by the heliozoon Actinophrys sol. Protoplasma 203:130–137.
Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S, Mathur V, Strassert JFH, Pinhassi J, Worden AZ, Keeling PJ, et al. . 2021. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun. 12:6651. PubMed PMC
Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, et al. . 2015. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep. 5:10134. PubMed PMC
Shih PM, Matzke NJ. 2013. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc Natl Acad Sci U S A. 110:12355–12360. PubMed PMC
Sibbald SJ, Archibald JM. 2020. Genomic insights into plastid evolution. Genome Biol Evol. 12:978–990. PubMed PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. PubMed
Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C. 2009. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10:484. PubMed PMC
Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, Huang J. 2014. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun. 5:5764. PubMed PMC
Stork S, Lau J, Moog D, Maier UG. 2013. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. Protoplasma 250:1013–1023. PubMed
Strassert JFH, Irisarri I, Williams TA, Burki F. 2021. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun. 12:1879. PubMed PMC
Subramanian VS, Subramanya SB, Rapp L, Marchant JS, Ma TY, Said HM. 2011. Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. Biochim Biophys Acta 1808:3016–3021. PubMed PMC
Suzaki T, Shigenaka Y, Watanabe S, Toyohara A. 1980. Food capture and ingestion in the large heliozoan, Echinosphaerium nucleofilum. J Cell Sci. 42:61–79. PubMed
Tan KSW. 2008. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin Microbiol Rev. 21:639–665. PubMed PMC
Tanaka T, Maeda Y, Veluchamy A, Tanaka M, Abida H, Maréchal E, Bowler C, Muto M, Sunaga Y, Tanaka M, et al. . 2015. Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Plant Cell 27:162–176. PubMed PMC
Thakur R, Shiratori T, Ishida K-I. 2019. Taxon-rich multigene phylogenetic analyses resolve the phylogenetic relationship among deep-branching stramenopiles. Protist 170:125682. PubMed
Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, Burki F, Eliáš M, Eme L, Roger AJ, et al. . 2021. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19:e3001365. PubMed PMC
Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, et al. . 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266. PubMed
Waller RF, Gornik SG, Koreny L, Pain A. 2016. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol. 9:e1116653. PubMed PMC
Wang H-C, Minh B-Q, Susko E, Roger AJ. 2018. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 67:216–235. PubMed
Wang Q, Sun H, Huang J. 2017. Re-analyses of “algal” genes suggest a complex evolutionary history of oomycetes. Front Plant Sci. 8:1540. PubMed PMC
Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19:153. PubMed PMC
Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin
figshare
10.6084/m9.figshare.19514266.v2