Resolution of 9,10-Diketo[7]helicene and Its Use in One-Step Preparation of Helicene-Based D-A-D Push-Pull Systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38804645
PubMed Central
PMC11165575
DOI
10.1021/acs.joc.4c00135
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Racemic 9,10-diketo[7]helicene was successfully separated into enantiomers using a reversible and stereoselective reaction with 2,2'-diamino-1,1'-binaphthalene with moderate yields but with remarkable purity (>99% de). The enantiomerically pure diketone was used as a convenient starting material for the preparation of helicene-based push-pull molecules, which incorporated aza-aryl acceptors and diarylaminophenylene donor groups in a single step. A series of six push-pull systems, along with three reference molecules without donors, were prepared and studied using UV/vis and fluorescence measurements, circular dichroism, and DFT calculations.
Zobrazit více v PubMed
Borissov A.; Maurya Y. K.; Moshniaha L.; Wong W. S.; Żyła-Karwowska M.; Stȩpień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem. Rev. 2022, 122 (1), 565–788. 10.1021/acs.chemrev.1c00449. PubMed DOI PMC
Madayanad Suresh S.; Hall D.; Beljonne D.; Olivier Y.; Zysman-Colman E. Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes. Adv. Funct Mater. 2020, 30 (33), 190867710.1002/adfm.201908677. DOI
Gingras M. One Hundred Years of Helicene Chemistry. Part 1: Non-Stereoselective Syntheses of Carbohelicenes. Chem. Soc. Rev. 2013, 42 (3), 968–1006. 10.1039/C2CS35154D. PubMed DOI
Gingras M. One Hundred Years of Helicene Chemistry. Part 3: Applications and Properties of Carbohelicenes. Chem. Soc. Rev. 2013, 42 (3), 1051–1095. 10.1039/C2CS35134J. PubMed DOI
Dhbaibi K.; Favereau L.; Crassous J. Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P). Chem. Rev. 2019, 119 (14), 8846–8953. 10.1021/acs.chemrev.9b00033. PubMed DOI
Jakubec M.; Storch J. Recent Advances in Functionalizations of Helicene Backbone. J. Org. Chem. 2020, 85 (21), 13415–13428. 10.1021/acs.joc.0c01837. PubMed DOI
Yang Y.; da Costa R. C.; Fuchter M. J.; Campbell A. J. Circularly Polarized Light Detection by a Chiral Organic Semiconductor Transistor. Nat. Photonics 2013, 7 (8), 634–638. 10.1038/nphoton.2013.176. DOI
Milić J. V.; Schaack C.; Hellou N.; Isenrich F.; Gershoni-Poranne R.; Neshchadin D.; Egloff S.; Trapp N.; Ruhlmann L.; Boudon C.; Gescheidt G.; Crassous J.; Diederich F. Light-Responsive Pyrazine-Based Systems: Probing Aromatic Diarylethene Photocyclization. J. Phys. Chem. C 2018, 122 (33), 19100–19109. 10.1021/acs.jpcc.8b05019. DOI
Kiran V.; Mathew S. P.; Cohen S. R.; Hernández Delgado I.; Lacour J.; Naaman R. Helicenes-A New Class of Organic Spin Filter. Adv. Mater. 2016, 28 (10), 1957–1962. 10.1002/adma.201504725. PubMed DOI
Rodríguez R.; Naranjo C.; Kumar A.; Matozzo P.; Das T. K.; Zhu Q.; Vanthuyne N.; Gómez R.; Naaman R.; Sánchez L.; Crassous J. Mutual Monomer Orientation To Bias the Supramolecular Polymerization of [6]Helicenes and the Resulting Circularly Polarized Light and Spin Filtering Properties. J. Am. Chem. Soc. 2022, 144 (17), 7709–7719. 10.1021/jacs.2c00556. PubMed DOI PMC
Kalachyova Y.; Guselnikova O.; Elashnikov R.; Panov I.; Žádný J.; Církva V.; Storch J.; Sykora J.; Zaruba K.; Švorčík V.; Lyutakov O. Helicene-SPP-Based Chiral Plasmonic Hybrid Structure: Toward Direct Enantiomers SERS Discrimination. ACS Appl. Mater. Interfaces 2019, 11 (1), 1555–1562. 10.1021/acsami.8b15520. PubMed DOI
Miliutina E.; Zadny J.; Guselnikova O.; Storch J.; Walaska H.; Kushnarenko A.; Burtsev V.; Svorcik V.; Lyutakov O. Chiroplasmon-Active Optical Fiber Probe for Environment Chirality Estimation. Sens Actuators B Chem. 2021, 343, 13012210.1016/j.snb.2021.130122. DOI
Guselnikova O.; Elashnikov R.; Švorčík V.; Záruba K.; Jakubec M.; Žádný J.; Storch J.; Lyutakov O. Charge-Transfer Complexation: A Highly Effective Way towards Chiral Nanoparticles Endowed by Intrinsically Chiral Helicene and Enantioselective SERS Detection. Sens. Actuators B 2023, 394, 134332.10.1016/j.snb.2023.134332. DOI
Zhao W. L.; Li M.; Lu H. Y.; Chen C. F. Advances in Helicene Derivatives with Circularly Polarized Luminescence. Chem. Commun. 2019, 55 (92), 13793–13803. 10.1039/C9CC06861A. PubMed DOI
Dhbaibi K.; Abella L.; Meunier-Della-Gatta S.; Roisnel T.; Vanthuyne N.; Jamoussi B.; Pieters G.; Racine B.; Quesnel E.; Autschbach J.; Crassous J.; Favereau L. Achieving High Circularly Polarized Luminescence with Push-Pull Helicenic Systems: From Rationalized Design to Top-Emission CP-OLED Applications. Chem. Sci. 2021, 12 (15), 5522–5533. 10.1039/D0SC06895K. PubMed DOI PMC
Yavari K.; Delaunay W.; De Rycke N.; Reynaldo T.; Aillard P.; Srebro-Hooper M.; Chang V. Y.; Muller G.; Tondelier D.; Geffroy B.; Voituriez A.; Marinetti A.; Hissler M.; Crassous J. Phosphahelicenes: From Chiroptical and Photophysical Properties to OLED Applications. Chem. Eur. J. 2019, 25 (20), 5303–5310. 10.1002/chem.201806140. PubMed DOI PMC
Sapir M.; Donckt E. V. Intersystem Crossing in the Helicenes. Chem. Phys. Lett. 1975, 36 (1), 108–110. 10.1016/0009-2614(75)85698-3. DOI
Liu Q.; Zhao C.; Tian G.; Ge H. Changing Molecular Conjugation with a Phenazine Acceptor for Improvement of Small Molecule-Based Organic Electronic Memory Performance. RSC Adv. 2018, 8 (2), 805–811. 10.1039/C7RA11932A. PubMed DOI PMC
Zhang C.; Li M.; Lu H. Y.; Chen C. F. Synthesis, Structures, and Photophysical Properties of Difuro-Fused Tetrahydro[5]Helicene Imide Derivatives. Asian J. Org. Chem. 2016, 5 (12), 1518–1524. 10.1002/ajoc.201600467. DOI
Li M.; Yao W.; Chen J.-D.; Lu H.-Y.; Zhao Y.; Chen C.-F. Tetrahydro[5]Helicene-Based Full-Color Emission Dyes in Both Solution and Solid States: Synthesis, Structures, Photophysical Properties and Optical Waveguide Applications. J. Mater. Chem. C 2014, 2 (39), 8373–8380. 10.1039/C4TC01562B. DOI
Li M.; Niu Y.; Zhu X.; Peng Q.; Lu H. Y.; Xia A.; Chen C. F. Tetrahydro[5]Helicene-Based Imide Dyes with Intense Fluorescence in Both Solution and Solid State. Chem. Commun. 2014, 50 (23), 2993–2995. 10.1039/C3CC49680E. PubMed DOI
Yamamoto Y.; Sakai H.; Yuasa J.; Araki Y.; Wada T.; Sakanoue T.; Takenobu T.; Kawai T.; Hasobe T. Synthetic Control of the Excited-State Dynamics and Circularly Polarized Luminescence of Fluorescent “Push-Pull” Tetrathia[9]Helicenes. Chem. Eur. J. 2016, 22 (12), 4263–4273. 10.1002/chem.201504048. PubMed DOI
Beránek T.; Kos M.; Váňa L.; Císařová I.; Sýkora J.; Storch J.; Církva V.; Jakubec M. Modification of Optical Properties in Helicenes via Construction of Phosphine Oxide-Based Push-Pull Systems. Dyes Pigm. 2023, 210, 111039.10.1016/j.dyepig.2022.111039. DOI
Sahasithiwat S.; Mophuang T.; Menbangpung L.; Kamtonwong S.; Sooksimuang T. 3,12-Dimethoxy-7,8-Dicyano-[5]Helicene as a Novel Emissive Material for Organic Light-Emitting Diode. Synth. Met. 2010, 160 (11–12), 1148–1152. 10.1016/j.synthmet.2010.02.039. DOI
Dova D.; Cauteruccio S.; Manfredi N.; Prager S.; Dreuw A.; Arnaboldi S.; Mussini P. R.; Licandro E.; Abbotto A. An Unconventional Helical Push-Pull System for Solar Cells. Dyes Pigm. 2019, 161, 382–388. 10.1016/j.dyepig.2018.09.050. PubMed DOI PMC
Lupi M.; Onori M.; Menichetti S.; Abbate S.; Longhi G.; Viglianisi C. Resolution of a Configurationally Stable Hetero[4]Helicene. Molecules 2022, 27 (4), 1160.10.3390/molecules27041160. PubMed DOI PMC
Tanaka K.; Osuga H.; Shogase Y.; Suzuki H. Convergent Synthesis of Optically Active Bifunctionalized [7]Thiaheterohelicene. Tetrahedron Lett. 1995, 36 (6), 915–918. 10.1016/0040-4039(94)02371-H. DOI
Míšek J.; Teplý F.; Stará I. G.; Tichý M.; Šaman D.; Císařová I.; Vojtíšek P.; Starý I. A Straightforward Route to Helically Chiral N-Heteroaromatic Compounds: Practical Synthesis of Racemic 1,14-Diaza[5]Helicene and Optically Pure 1- and 2-Aza[6]Helicenes. Angewandte Chemie - International Edition 2008, 47 (17), 3188–3191. 10.1002/anie.200705463. PubMed DOI
Martin R. H.; Libert V. J. J. Chem. Res., Synop. 1980, 34, 130–131.
Gingras M.; Félix G.; Peresutti R. One Hundred Years of Helicene Chemistry. Part 2: Stereoselective Syntheses and Chiral Separations of Carbohelicenes. Chem. Soc. Rev. 2013, 42 (3), 1007–1050. 10.1039/C2CS35111K. PubMed DOI
Sakai H.; Shinto S.; Kumar J.; Araki Y.; Sakanoue T.; Takenobu T.; Wada T.; Kawai T.; Hasobe T. Highly Fluorescent [7]Carbohelicene Fused by Asymmetric 1,2-Dialkyl-Substituted Quinoxaline for Circularly Polarized Luminescence and Electroluminescence. J. Phys. Chem. C 2015, 119 (24), 13937–13947. 10.1021/acs.jpcc.5b03386. DOI
Sakai H.; Shinto S.; Araki Y.; Wada T.; Sakanoue T.; Takenobu T.; Hasobe T. Formation of One-Dimensional Helical Columns and Excimerlike Excited States by Racemic Quinoxaline-Fused [7]Carbohelicenes in the Crystal. Chem. Eur. J. 2014, 20 (32), 10099–10109. 10.1002/chem.201402426. PubMed DOI
Jakubec M.; Hansen-Troøyen S.; Císařová I.; Sýkora J.; Storch J. Photochemical Oxidation Specific to Distorted Aromatic Amines Providing Ortho -Diketones. Org. Lett. 2020, 22 (10), 3905–3910. 10.1021/acs.orglett.0c01190. PubMed DOI
Dubey R. K.; Melle-Franco M.; Mateo-Alonso A. Inducing Single-Handed Helicity in a Twisted Molecular Nanoribbon. J. Am. Chem. Soc. 2022, 144 (6), 2765–2774. 10.1021/jacs.1c12385. PubMed DOI PMC
Patel D. C.; Woods R. M.; Breitbach Z. S.; Berthod A.; Armstrong D. W. Thermal Racemization of Biaryl Atropisomers. Tetrahedron Asymmetry 2017, 28 (11), 1557–1561. 10.1016/j.tetasy.2017.09.006. DOI
Váňa L.; Jakubec M.; Sýkora J.; Císařová I.; Žádný J.; Storch J.; Církva V. Synthesis of Aza[n]helicenes (n = 4–7) via Photocyclodehydrochlorination of 1-Chloro-N-aryl-2-naphthamides. J. Org. Chem. 2022, 87 (11), 7150–7166. 10.1021/acs.joc.2c00375. PubMed DOI