Generalist Eimeria species in rodents: Multilocus analyses indicate inadequate resolution of established markers
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32076521
PubMed Central
PMC7029063
DOI
10.1002/ece3.5992
PII: ECE35992
Knihovny.cz E-zdroje
- Klíčová slova
- 18S, COI, Eimeria, multilocus sequence typing, phylogenetics, rodents,
- Publikační typ
- časopisecké články MeSH
Intracellular parasites of the genus Eimeria are described as tissue/host-specific. Phylogenetic classification of rodent Eimeria suggested that some species have a broader host range than previously assumed. We explore whether Eimeria spp. infecting house mice are misclassified by the most widely used molecular markers due to a lack of resolution, or whether, instead, these parasite species are indeed infecting multiple host species.With the commonly used markers (18S/COI), we recovered monophyletic clades of E. falciformis and E. vermiformis from Mus that included E. apionodes identified in other rodent host species (Apodemus spp., Myodes glareolus, and Microtus arvalis). A lack of internal resolution in these clades could suggest the existence of a species complex with a wide host range infecting murid and cricetid rodents. We question, however, the power of COI and 18S markers to provide adequate resolution for assessing host specificity. In addition to the rarely used marker ORF470 from the apicoplast genome, we present multilocus genotyping as an alternative approach. Phylogenetic analysis of 35 nuclear markers differentiated E. falciformis from house mice from isolates from Apodemus hosts. Isolates of E. vermiformis from Mus are still found in clusters interspersed with non-Mus isolates, even with this high-resolution data.In conclusion, we show that species-level resolution should not be assumed for COI and 18S markers in coccidia. Host-parasite cospeciation at shallow phylogenetic nodes, as well as contemporary coccidian host ranges more generally, is still open questions that need to be addressed using novel genetic markers with higher resolution.
Department of Molecular Parasitology Institute for Biology Humboldt University Berlin Berlin Germany
Leibniz Institut für Zoo und Wildtierforschung im Forschungsverbund Berlin e 5 Berlin Germany
Zobrazit více v PubMed
Abramson, N. I. , Rodchenkova, E. N. , & Kostygov, A. Y. (2009). Genetic variation and phylogeography of the bank vole (Clethrionomys glareolus, Arvicolinae, Rodentia) in Russia with special reference to the introgression of the mtDNA of a closely related species, red‐backed vole (Cl. Rutilus). Russian Journal of Genetics, 45(5), 533 10.1134/S1022795409050044 PubMed DOI
Adamson, M. L. , & Caira, J. N. (1994). Evolutionary factors influencing the nature of parasite specificity. Parasitology, 109(S1), S85–S95. 10.1017/S0031182000085103 PubMed DOI
Ball, S. J. , & Lewis, D. C. (1984). Eimeviu (Protozoa: Coccidia) in wild populations of some British rodents. Journal of Zoology, 202(3), 373–381.
Barta, J. R. , Martin, D. S. , Liberator, P. A. , Dashkevicz, M. , Anderson, J. W. , Feighner, S. D. , … Profous‐Juchelka, H. (1997). Phylogenetic relationships among eight Eimeria species infecting domestic fowl inferred using complete small subunit ribosomal DNA sequences. The Journal of Parasitology, 83(2), 262–271. 10.2307/3284453 PubMed DOI
Becker, E. R. (1934). Coccidia and coccidiosis of domesticated, game and laboratory animals and of man. Berlin; Verlag Paul Parey: Budapest, Hungary: Akademiai Kiado.
Callahan, B. J. , McMurdie, P. J. , Rosen, M. J. , Han, A. W. , Johnson, A. J. A. , & Holmes, S. P. (2016). DADA2: High‐resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581 10.1038/nmeth.3869 PubMed DOI PMC
Churakov, G. , Sadasivuni, M. K. , Rosenbloom, K. R. , Huchon, D. , Brosius, J. , & Schmitz, J. (2010). Rodent evolution: Back to the root. Molecular Biology and Evolution, 27(6), 1315–1326. 10.1093/molbev/msq019 PubMed DOI
Combes, C. (2001). Parasitism: The ecology and evolution of intimate interactions. Chicago, IL: University of Chicago Press.
De Vos, A. J. (1970). Studies on the host range of Eimeria chinchillae de Vos & van der Westhuizen, 1968. The Onderstepoort Journal of Veterinary Research, 37(1), 29–36. PubMed
Deng, W. , Maust, B. , Nickle*, D. , Learn**, G. , Liu, Y. I. , Heath, L. , … Mullins, J. (2010). DIVEIN: A web server to analyze phylogenies, sequence divergence, diversity, and informative sites. BioTechniques, 48(5), 405–408. 10.2144/000113370 PubMed DOI PMC
Dray, S. , & Dufour, A. B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.
Ďureje, Ľ. , Macholán, M. , Baird, S. J. , & Piálek, J. (2012). The mouse hybrid zone in Central Europe: From morphology to molecules. Folia Zoologica, 61(3–4), 308–319. 10.25225/fozo.v61.i3.a13.2012 DOI
Duszynski, D. W. (Ed.). (2011). Eimeria e LS (pp. 1192–1196). Chichester, UK: John Wiley & Sons, Ltd; 10.1002/9780470015902.a0001962.pub2 DOI
Duszynski, D. W. , Eastham, G. , & Yates, T. L. (1982). Eimeria from jumping mice (Zapus spp.): A new species and genetic and geographic features of Z. hudsonius luteus . The Journal of Parasitology, 68(6), 1146–1148.
Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Eimer, T. (1870). Ueber Die Ei‐Oder Kugelförmigen Sogenannten Psorospermien Der Wirbelthiere: Ein Beitrag Zur Entwicklungsgeschichte Der Gregarinen Und Zur Kenntniss Dieser Parasiten Als Krankheitsursache. A. Stuber.
Fenton, A. , & Brockhurst, M. A. (2008). The role of specialist parasites in structuring host communities. Ecological Research, 23(5), 795–804. 10.1007/s11284-007-0440-6 DOI
Forbes, M. R. , Muma, K. E. , & Smith, B. P. (2002). Diffuse coevolution: Constraints on a generalist parasite favor use of a dead end host. Ecography, 25(3), 345–351. 10.1034/j.1600-0587.2002.250311.x DOI
Guindon, S. , Dufayard, J. F. , Lefort, V. , Anisimova, M. , Hordijk, W. , & Gascuel, O. (2010). New algorithms and methods to estimate maximum‐likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. 10.1093/sysbio/syq010 PubMed DOI
Haberkorn, A. (1970). Die Entwicklung von Eimeria falciformis (Eimer 1870) in der weißen Maus (Mus musculus). Zeitschrift Für Parasitenkunde, 34(1), 49–67.
Heitlinger, E. (2019). MultiAmpliconv0.1. Retrieved from: https://derele.github.io/MultiAmplicon/index.html
Heitlinger, E. , Spork, S. , Lucius, R. , & Dieterich, C. (2014). The genome of Eimeria falciformis‐reduction and specialization in a single host apicomplexan parasite. BMC Genomics, 15(1), 696. PubMed PMC
Hnida, J. A. , & Duszynski, D. W. (1999a). Taxonomy and systematics of some Eimeria species of murid rodents as determined by the ITS1 region of the ribosomal gene complex. Parasitology, 119(4), 349–357. PubMed
Hnida, J. A. , & Duszynski, D. W. (1999b). Taxonomy and phylogeny of some Eimeria (Apicomplexa: Eimeriidae) species of rodents as determined by polymerase chain reaction/restriction‐fragment‐length polymorphism analysis of 18s rDNA. Parasitology Research, 85(11), 887–894. PubMed
Hnida, J. A. , Wilson, W. D. , & Duszynski, D. W. (1998). A New Eimeria Species (Apicomplexa: Eimeriidae) Infecting Onychomys Species (Rodentia: Muridae) in New Mexico and Arizona. The Journal of Parasitology, 84(6), 1207–10.2307/3284675 PubMed DOI
Huelsenbeck, J. P. , & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. 10.1093/bioinformatics/17.8.754 PubMed DOI
Jaarola, M. , & Searle, J. B. (2002). Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Molecular Ecology, 11(12), 2613–2621. 10.1046/j.1365-294X.2002.01639.x PubMed DOI
Jarquín‐Díaz, V. H. , Balard, A. , Jost, J. , Kraft, J. , Dikmen, M. N. , Jana, K. , & Heitlinger, E. (2019). Detection and quantification of house mouse Eimeria at the species level–challenges and solutions for the assessment of Coccidia in wildlife. International Journal for Parasitology: Parasites and Wildlife, 10, 29–40. 10.1016/j.ijppaw.2019.07.004 PubMed DOI PMC
Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. 10.1093/bioinformatics/btn129 PubMed DOI
Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of Evolutionary Biology, 15(2), 173–190. 10.1046/j.1420-9101.2002.00377.x DOI
Kvičerová, J. , & Hypša, V. (2013). Host‐parasite incongruences in rodent Eimeria suggest significant role of adaptation rather than cophylogeny in maintenance of host specificity. PLoS ONE, 8(7), e63601 10.1371/journal.pone.0063601 PubMed DOI PMC
KvičerovÁ, J. , Mikeš, V. , & Hypša, V. (2011). Third lineage of rodent eimerians: Morphology, phylogeny and re‐description of Eimeria myoxi (Apicomplexa: Eimeriidae) from Eliomys quercinus (Rodentia: Gliridae). Parasitology, 138(10), 1217–1223. PubMed
Kvičerová, J. , Pakandl, M. , & Hypša, V. (2008). Phylogenetic relationships among Eimeria spp. (Apicomplexa, Eimeriidae) infecting rabbits: Evolutionary significance of biological and morphological features. Parasitology, 135(4), 443–452. PubMed
Lainson, R. , & Shaw, J. J. (1990). Coccidia of Brazilian mammals: Eimeria corticulata n. sp. (Apicomplexa: Eimeriidae) from the anteater Tamandua tetradactyla (Xenarthra: Myrmecophagidae) and Eimeria zygodontomyis n. sp. from the cane mouse Zygodontomys lasiurus (Rodentia: Cricetidae). The Journal of Protozoology, 37(1), 51–54. PubMed
Levine, N. D. , & Ivens, V. (1965). The coccidian parasites (Protozoa, Sporozoa) of rodents 33. Illinois Biological Monographs, 33.
Levine, N. D. , & Ivens, V. (1988). Cross transmission of Eimeria spp. (Protozoa, Apicomplexa) of rodents—a review. The Journal of Protozoology, 35(3), 434–437. PubMed
Long, P. L. , & Joyner, L. P. (1984). Problems in the identification of species of Eimeria . The Journal of Protozoology, 31(4), 535–541. 10.1111/j.1550-7408.1984.tb05498.x PubMed DOI
Mácová, A. , Hoblíková, A. , Hypša, V. , Stanko, M. , Martinů, J. , & Kvičerová, J. (2018). Mysteries of host switching: Diversification and host specificity in rodent‐coccidia associations. Molecular Phylogenetics and Evolution, 127, 179–189. 10.1016/j.ympev.2018.05.009 PubMed DOI
MacPherson, J. M. , & Gajadhar, A. A. (1993). Differentiation of seven Eimeria species by random amplified polymorphic DNA. Veterinary Parasitology, 45(3–4), 257–266. 10.1016/0304-4017(93)90080-7 PubMed DOI
Marquardt, W. C. (1981). Host and site specificity in the coccidia: A perspective 1. The Journal of Protozoology, 28(2), 243–244. 10.1111/j.1550-7408.1981.tb02841.x DOI
Mesfin, G. M. , & Bellamy, J. E. (1978). The life cycle of Eimeria falciformis var. pragensis (Sporozoa: Coccidia) in the mouse, Mus musculus. The Journal of Parasitology, 64(4), 696–705. PubMed
Meyer, C. P. , & Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology, 3(12), e422 10.1371/journal.pbio.0030422 PubMed DOI PMC
Ogedengbe, J. D. , Hanner, R. H. , & Barta, J. R. (2011). DNA barcoding identifies Eimeria species and contributes to the phylogenetics of coccidian parasites (Eimeriorina, Apicomplexa, Alveolata). International Journal for Parasitology, 41(8), 843–850. 10.1016/j.ijpara.2011.03.007 PubMed DOI
Ogedengbe, J. D. , Ogedengbe, M. E. , Hafeez, M. A. , & Barta, J. R. (2015). Molecular phylogenetics of eimeriid coccidia (Eimeriidae, Eimeriorina, Apicomplexa, Alveolata): A preliminary multi‐gene and multi‐genome approach. Parasitology Research, 114(11), 4149–4160. 10.1007/s00436-015-4646-1 PubMed DOI
Ogedengbe, M. E. , El‐Sherry, S. , Ogedengbe, J. D. , Chapman, H. D. , & Barta, J. R. (2018). Phylogenies based on combined mitochondrial and nuclear sequences conflict with morphologically defined genera in the eimeriid coccidia (Apicomplexa). International Journal for Parasitology, 48(1), 59–69. 10.1016/j.ijpara.2017.07.008 PubMed DOI
Paradis, E. , Jombart, T. , Brian, K. , Schliep, K. , Potts, A. , Winter, D. , & Kamvar, Z. N. (2018). Population and evolutionary genetics analysis system. R Package Version 11, 1.
Pellérdy, L. (1954). Zur Kenntnis der Coccidien aus Apodemus flavicollis . Acta Veterinaria Academiae Scientarum Hungaricae, 4, 187–191.
Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25(7), 1253–1256. 10.1093/molbev/msn083 PubMed DOI
Poulin, R. , Krasnov, B. R. , & Mouillot, D. (2011). Host specificity in phylogenetic and geographic space. Trends in Parasitology, 27(8), 355–361. 10.1016/j.pt.2011.05.003 PubMed DOI
Rambaut, A. (2012). FigTree v1.4. Available at: http://tree.bio.ed.ac.uk/software/figtree/ (Accessed October 2017).
Rathore, D. , Hrstka, S. C. , Sacci, J. B. , De la Vega, P. , Linhardt, R. J. , Kumar, S. , & McCutchan, T. F. (2003). Molecular mechanism of host specificity in Plasmodium falciparum infection role of circumsporozoite protein. Journal of Biological Chemistry, 278(42), 40905–40910. PubMed
Reid, A. J. , Blake, D. P. , Ansari, H. R. , Billington, K. , Browne, H. P. , Bryant, J. , … Pain, A. (2014). Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Research, 24(10), 1676–1685. 10.1101/gr.168955.113 PubMed DOI PMC
Reutter, B. A. , Petit, E. , Brünner, H. , & Vogel, P. (2003). Cytochrome b haplotype divergences in West European Apodemus. Mammalian Biology‐Zeitschrift Für Säugetierkunde, 68(3), 153–164. 10.1078/1616-5047-00077 DOI
Ronquist, F. , Teslenko, M. , Van Der Mark, P. , Ayres, D. L. , Darling, A. , Höhna, S. , … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. PubMed PMC
Schmid Hempel, P. (2011). Evolutionary parasitology the integrated study of infections, immunology, ecology, and genetics (No. 574.5249 S2). Reprinted. New York: Oxford University Press.
Steppan, S. J. , Adkins, R. M. , & Anderson, J. (2004). Phylogeny and divergence‐date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology, 53(4), 533–553. 10.1080/10635150490468701 PubMed DOI
Sukumaran, J. , & Holder, M. T. (2010). DendroPy: A Python library for phylogenetic computing. Bioinformatics, 26(12), 1569–1571. 10.1093/bioinformatics/btq228 PubMed DOI
Tenter, A. M. , Barta, J. R. , Beveridge, I. , Duszynski, D. W. , Mehlhorn, H. , Morrison, D. A. , … Conrad, P. A. (2002). The conceptual basis for a new classification of the coccidia. International Journal for Parasitology, 32(5), 595–616. 10.1016/S0020-7519(02)00021-8 PubMed DOI
Todd, K. S. Jr , & Hammond, D. M. (1968). Life cycle and host specificity of Eimeria callospermophili Henry, 1932 from the Uinta ground squirrel Spermophilus armatus. The Journal of Protozoology, 15(1), 1–8. PubMed
Todd, K. S. Jr , & Lepp, D. L. (1971). The life cycle of Eimeria vermiformis Ernst, Chobotar and Hammond, 1971 in the Mouse Mus musculus 1. The Journal of Protozoology, 18(2), 332–337. PubMed
Turner, W. C. , Penzhorn, B. L. , & Getz, W. M. (2016). Description of 3 new species of Eimeria (Apicomplexa: Eimeriidae) from Springbok (Antidorcas marsupialis) in Namibia. Comparative Parasitology, 83(2), 202–212.
Upton, S. J. , McAllister, C. T. , Brillhart, D. B. , Duszynski, D. W. , & Wash, C. D. (1992). Cross‐transmission studies with Eimeria arizonensis‐like oocysts (Apicomplexa) in New World rodents of the genera Baiomys, Neotoma, Onychomys, Peromyscus, and Reithrodontomys (Muridae). The Journal of Parasitology, 78, 406–413. 10.2307/3283636 PubMed DOI
Wash, C. D. , Duszynski, D. W. , & Yates, T. L. (1985). Eimerians from different karyotypes of the Japanese wood mouse (Apodemus spp.), with descriptions of two new species and a redescription of Eimeria montgomeryae Lewis and Ball, 1983. The Journal of Parasitology, 71, 808–814. PubMed
Wilber, P. G. , Duszynski, D. W. , Upton, S. J. , Seville, R. S. , & Corliss, J. O. (1998). A revision of the taxonomy and nomenclature of the Eimeria spp. (Apicomplexa: Eimeriidae) from rodents in the Tribe Marmotini (Sciuridae). Systematic Parasitology, 39(2), 113–135.
Wright, E. S. (2016). Using DECIPHER v2. 0 to analyze big biological sequence data in R. R Journal, 8(1), 352–359.
Zhao, X. , & Duszynski, D. (2001a). Molecular phylogenies suggest the oocyst residuum can be used to distinguish two independent lineages of Eimeria spp in rodents. Parasitology Research, 87(8), 638–643. PubMed
Zhao, X. , & Duszynski, D. W. (2001b). Phylogenetic relationships among rodent Eimeria species determined by plastid ORF470 and nuclear 18S rDNA sequences. International Journal for Parasitology, 31(7), 715–719. PubMed