Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
BB/M009971/1
Biotechnology and Biological Sciences Research Council - United Kingdom
R21 ES021028
NIEHS NIH HHS - United States
PubMed
28892507
PubMed Central
PMC5608401
DOI
10.1371/journal.pbio.2003769
PII: pbio.2003769
Knihovny.cz E-zdroje
- MeSH
- Blastocystis genetika metabolismus MeSH
- druhová specificita MeSH
- genom protozoální * MeSH
- introny MeSH
- lidé MeSH
- metabolismus sacharidů MeSH
- střevní mikroflóra MeSH
- terminační kodon MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- terminační kodon MeSH
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than β-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
Biosciences University of Exeter Exeter United Kingdom
CNRS UMR 7257 Aix Marseille University Marseille France
College of Life and Environmental Sciences University of Exeter Exeter United Kingdom
Department of Biochemistry and Molecular Biology Dalhousie University Halifax Nova Scotia Canada
Department of Biological Sciences King Abdulaziz University Jeddah Saudi Arabia
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Cell Biology University of Alberta Edmonton Alberta Canada
INRA USC 1408 AFMB Marseille France
Zobrazit více v PubMed
Scanlan PD, Stensvold CR. Blastocystis: getting to grips with our guileful guest. Trends Parasitol. 2013. November;29(11):523–9. doi: 10.1016/j.pt.2013.08.006 PubMed DOI
Wawrzyniak I, Poirier P, Viscogliosi E, Dionigia M, Texier C, Delbac F, et al. Blastocystis, an unrecognized parasite: an overview of pathogenesis and diagnosis. Ther Adv Infect Dis. 2013. October;1(5):167–78. doi: 10.1177/2049936113504754 PubMed DOI PMC
Roberts T, Stark D, Harkness J, Ellis J. Update on the pathogenic potential and treatment options for Blastocystis sp. Gut Pathog. 2014. May 28;6:17,4749-6-17. eCollection 2014. PubMed PMC
Scanlan PD, Stensvold CR, Rajilic-Stojanovic M, Heilig HG, De Vos WM, O'Toole PW, et al. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol Ecol. 2014. October;90(1):326–30. doi: 10.1111/1574-6941.12396 PubMed DOI
Alfellani MA, Stensvold CR, Vidal-Lapiedra A, Onuoha ES, Fagbenro-Beyioku AF, Clark CG. Variable geographic distribution of Blastocystis subtypes and its potential implications. Acta Trop. 2013. April;126(1):11–8. doi: 10.1016/j.actatropica.2012.12.011 PubMed DOI
Stensvold CR, Clark CG. Current status of Blastocystis: A personal view. Parasitol Int. 2016. December;65(6 Pt B):763–71. PubMed
Ajjampur SS, Tan KS. Pathogenic mechanisms in Blastocystis spp.—Interpreting results from in vitro and in vivo studies. Parasitol Int. 2016. December;65(6 Pt B):772–9. PubMed
Nourrisson C, Wawrzyniak I, Cian A, Livrelli V, Viscogliosi E, Delbac F, et al. On Blastocystis secreted cysteine proteases: a legumain-activated cathepsin B increases paracellular permeability of intestinal Caco-2 cell monolayers. Parasitology. 2016. September 9:1–10. PubMed
Wu Z, Mirza H, Tan KS. Intra-subtype variation in enteroadhesion accounts for differences in epithelial barrier disruption and is associated with metronidazole resistance in Blastocystis subtype-7. PLoS Negl Trop Dis. 2014. May 22;8(5):e2885 doi: 10.1371/journal.pntd.0002885 PubMed DOI PMC
Mohamed RT, El-Bali MA, Mohamed AA, Abdel-Fatah MA, El-Malky MA, Mowafy NM, et al. Subtyping of Blastocystis sp. isolated from symptomatic and asymptomatic individuals in Makkah, Saudi Arabia. Parasit Vectors. 2017. April 7;10(1):174,017-2114-8. PubMed PMC
Alinaghizade A, Mirjalali H, Mohebali M, Stensvold CR, Rezaeian M. Inter- and intra-subtype variation of Blastocystis subtypes isolated from diarrheic and non-diarrheic patients in Iran. Infect Genet Evol. 2017. June;50:77–82. doi: 10.1016/j.meegid.2017.02.016 PubMed DOI
Seyer A, Karasartova D, Ruh E, Gureser AS, Turgal E, Imir T, et al. Epidemiology and Prevalence of Blastocystis spp. in North Cyprus. Am J Trop Med Hyg. 2017. May;96(5):1164–70. doi: 10.4269/ajtmh.16-0706 PubMed DOI PMC
Andersen LO, Bonde I, Nielsen HB, Stensvold CR. A retrospective metagenomics approach to studying Blastocystis. FEMS Microbiol Ecol. 2015. July;91(7): doi: 10.1093/femsec/fiv072 Epub 2015 Jun 29. PubMed DOI
Audebert C, Even G, Cian A, Blastocystis Investigation Group, Loywick A, Merlin S, et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep. 2016. May 5;6:25255 doi: 10.1038/srep25255 PubMed DOI PMC
Nourrisson C, Scanzi J, Pereira B, NkoudMongo C, Wawrzyniak I, Cian A, et al. Blastocystis is associated with decrease of fecal microbiota protective bacteria: comparative analysis between patients with irritable bowel syndrome and control subjects. PLoS ONE. 2014. November 3;9(11):e111868 doi: 10.1371/journal.pone.0111868 PubMed DOI PMC
Nagel R, Traub RJ, Allcock RJ, Kwan MM, Bielefeldt-Ohmann H. Comparison of faecal microbiota in Blastocystis-positive and Blastocystis-negative irritable bowel syndrome patients. Microbiome. 2016. August 31;4(1):47,016-0191-0. PubMed PMC
Perez-Brocal V, Clark CG. Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content, and genome organization. Mol Biol Evol. 2008. November;25(11):2475–82. doi: 10.1093/molbev/msn193 PubMed DOI PMC
Stechmann A, Hamblin K, Perez-Brocal V, Gaston D, Richmond GS, van der Giezen M, et al. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol. 2008. April 22;18(8):580–5. doi: 10.1016/j.cub.2008.03.037 PubMed DOI PMC
Wawrzyniak I, Roussel M, Diogon M, Couloux A, Texier C, Tan KS, et al. Complete circular DNA in the mitochondria-like organelles of Blastocystis hominis. Int J Parasitol. 2008. October;38(12):1377–82. doi: 10.1016/j.ijpara.2008.06.001 PubMed DOI
Jacob AS, Andersen LO, Pavinski Bitar P, Richards VP, Shah S, Stanhope MJ, et al. Blastocystis mitochondrial genomes appear to show multiple independent gains and losses of start and stop codons. Genome Biol Evol. 2016. November 3. PubMed PMC
Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, et al. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol. 2011;12(3):R29,2011-12-3-r29. Epub 2011 Mar 25. PubMed PMC
Wawrzyniak I, Courtine D, Osman M, Hubans-Pierlot C, Cian A, Nourrisson C, et al. Draft genome sequence of the intestinal parasite Blastocystis subtype 4-isolate WR1. Genom Data. 2015. February 2;4:22–3. doi: 10.1016/j.gdata.2015.01.009 PubMed DOI PMC
Jerlstrom-Hultqvist J, Franzen O, Ankarklev J, Xu F, Nohynkova E, Andersson JO, et al. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics. 2010. October 7;11:543,2164-11-543. PubMed PMC
Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011. December;21(12):2129–42. doi: 10.1101/gr.122945.111 PubMed DOI PMC
Klimes V, Gentekaki E, Roger AJ, Elias M. A large number of nuclear genes in the human parasite blastocystis require mRNA polyadenylation to create functional termination codons. Genome Biol Evol. 2014. July 10;6(8):1956–61. doi: 10.1093/gbe/evu146 PubMed DOI PMC
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct. 2012. April 16;7:11,6150-7-11. PubMed PMC
Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol. 2013. August 5;23(15):1399–408. doi: 10.1016/j.cub.2013.05.062 PubMed DOI
Will CL, Schneider C, Hossbach M, Urlaub H, Rauhut R, Elbashir S, et al. The human 18S U11/U12 snRNP contains a set of novel proteins not found in the U2-dependent spliceosome. RNA. 2004. June;10(6):929–41. doi: 10.1261/rna.7320604 PubMed DOI PMC
Turunen JJ, Niemela EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA. 2013. Jan-Feb;4(1):61–76. doi: 10.1002/wrna.1141 PubMed DOI PMC
Noel C, Dufernez F, Gerbod D, Edgcomb VP, Delgado-Viscogliosi P, Ho LC, et al. Molecular phylogenies of Blastocystis isolates from different hosts: implications for genetic diversity, identification of species, and zoonosis. J Clin Microbiol. 2005. January;43(1):348–55. doi: 10.1128/JCM.43.1.348-355.2005 PubMed DOI PMC
Yoshikawa H, Koyama Y, Tsuchiya E, Takami K. Blastocystis phylogeny among various isolates from humans to insects. Parasitol Int. 2016. December;65(6 Pt B):750–9. PubMed
Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 2002. October;27(10):514–20. PubMed
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002. December 6;298(5600):1912–34. doi: 10.1126/science.1075762 PubMed DOI
Chuang WL, Lin PY, Lin HC, Chen YL. The Apoptotic Effect of Ursolic Acid on SK-Hep-1 Cells is Regulated by the PI3K/Akt, p38 and JNK MAPK Signaling Pathways. Molecules. 2016. April 20;21(4):460 doi: 10.3390/molecules21040460 PubMed DOI PMC
Ellis JG 4th, Davila M, Chakrabarti R. Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specific activation and intracellular localization. J Biol Chem. 2003. January 17;278(3):1936–45. doi: 10.1074/jbc.M209274200 PubMed DOI
Hua SB, Wang CC. Interferon-gamma activation of a mitogen-activated protein kinase, KFR1, in the bloodstream form of Trypanosoma brucei. J Biol Chem. 1997. April 18;272(16):10797–803. PubMed
Roman E, Arana DM, Nombela C, Alonso-Monge R, Pla J. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 2007. April;15(4):181–90. doi: 10.1016/j.tim.2007.02.001 PubMed DOI
Yu Z, An B, Ramshaw JA, Brodsky B. Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol. 2014. June;186(3):451–61. doi: 10.1016/j.jsb.2014.01.003 PubMed DOI PMC
Caswell CC, Barczyk M, Keene DR, Lukomska E, Gullberg DE, Lukomski S. Identification of the first prokaryotic collagen sequence motif that mediates binding to human collagen receptors, integrins α2β1 and α11β1. J Biol Chem. 2008. December 26;283(52):36168–75. doi: 10.1074/jbc.M806865200 PubMed DOI PMC
Paterson GK, Nieminen L, Jefferies JM, Mitchell TJ. PclA, a pneumococcal collagen-like protein with selected strain distribution, contributes to adherence and invasion of host cells. FEMS Microbiol Lett. 2008. August;285(2):170–6. doi: 10.1111/j.1574-6968.2008.01217.x PubMed DOI
Sylvestre P, Couture-Tosi E, Mock M. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol. 2002. July;45(1):169–78. PubMed
Dunn LA, Boreham PF, Stenzel DJ. Ultrastructural variation of Blastocystis hominis stocks in culture. Int J Parasitol. 1989. February;19(1):43–56. PubMed
Zaman V. Phase-contrast microscopy of cell division in Blastocystis hominis. Ann Trop Med Parasitol. 1997. March;91(2):223–4. PubMed
Zaman V, Howe J, Ng M, Goh TK. Scanning electron microscopy of the surface coat of Blastocystis hominis. Parasitol Res. 1999. December;85(12):974–6. PubMed
Klemba M, Goldberg DE. Biological roles of proteases in parasitic protozoa. Annu Rev Biochem. 2002;71:275–305. doi: 10.1146/annurev.biochem.71.090501.145453 PubMed DOI
Puthia MK, Vaithilingam A, Lu J, Tan KS. Degradation of human secretory immunoglobulin A by Blastocystis. Parasitol Res. 2005. November;97(5):386–9. doi: 10.1007/s00436-005-1461-0 PubMed DOI
Puthia MK, Lu J, Tan KS. Blastocystis ratti contains cysteine proteases that mediate interleukin-8 response from human intestinal epithelial cells in an NF-kappaB-dependent manner. Eukaryot Cell. 2008. March;7(3):435–43. doi: 10.1128/EC.00371-07 PubMed DOI PMC
Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol. 2002. March;120(1):1–21. PubMed
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997. September 1;25(17):3389–402. PubMed PMC
Mottram JC, Coombs GH, Alexander J. Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol. 2004. August;7(4):375–81. doi: 10.1016/j.mib.2004.06.010 PubMed DOI
Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014. January;42(Database issue):D503–9. doi: 10.1093/nar/gkt953 PubMed DOI PMC
Rendon-Gandarilla FJ, Ramon-Luing Lde L, Ortega-Lopez J, Rosa de Andrade I, Benchimol M, Arroyo R. The TvLEGU-1, a legumain-like cysteine proteinase, plays a key role in Trichomonas vaginalis cytoadherence. Biomed Res Int. 2013;2013:561979 doi: 10.1155/2013/561979 PubMed DOI PMC
Baker RP, Wijetilaka R, Urban S. Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog. 2006. October;2(10):e113 doi: 10.1371/journal.ppat.0020113 PubMed DOI PMC
Baxt LA, Baker RP, Singh U, Urban S. An Entamoeba histolytica rhomboid protease with atypical specificity cleaves a surface lectin involved in phagocytosis and immune evasion. Genes Dev. 2008. June 15;22(12):1636–46. doi: 10.1101/gad.1667708 PubMed DOI PMC
Brossier F, Jewett TJ, Sibley LD, Urban S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci U S A. 2005. March 15;102(11):4146–51. doi: 10.1073/pnas.0407918102 PubMed DOI PMC
Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012. June;76(2):444–95. doi: 10.1128/MMBR.05024-11 PubMed DOI PMC
Lantsman Y, Tan KS, Morada M, Yarlett N. Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7. Microbiology. 2008. September;154(Pt 9):2757–66. doi: 10.1099/mic.0.2008/017897-0 PubMed DOI
Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W. Pyruvate: NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol. 2001. May;18(5):710–20. PubMed
Suomi F, Menger KE, Monteuuis G, Naumann U, Kursu VA, Shvetsova A, et al. Expression and evolution of the non-canonically translated yeast mitochondrial acetyl-CoA carboxylase Hfa1p. PLoS ONE. 2014. December 11;9(12):e114738 doi: 10.1371/journal.pone.0114738 PubMed DOI PMC
Hamann E, Gruber-Vodicka H, Kleiner M, Tegetmeyer HE, Riedel D, Littmann S, et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature. 2016. June 9;534(7606):254–8. doi: 10.1038/nature18297 PubMed DOI PMC
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci. 2015. September 26;370(1678):20140326 doi: 10.1098/rstb.2014.0326 PubMed DOI PMC
Yamaoka S, Hara-Nishimura I. The mitochondrial Ras-related GTPase Miro: views from inside and outside the metazoan kingdom. Front Plant Sci. 2014. July 16;5:350 doi: 10.3389/fpls.2014.00350 PubMed DOI PMC
Vlahou G, Elias M, von Kleist-Retzow JC, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol. 2011. April;90(4):342–55. doi: 10.1016/j.ejcb.2010.10.012 PubMed DOI
Klinger CM, Nisbet RE, Ouologuem DT, Roos DS, Dacks JB. Cryptic organelle homology in apicomplexan parasites: insights from evolutionary cell biology. Curr Opin Microbiol. 2013. August;16(4):424–31. doi: 10.1016/j.mib.2013.07.015 PubMed DOI PMC
Perry RJ, Mast FD, Rachubinski RA. Endoplasmic reticulum-associated secretory proteins Sec20p, Sec39p, and Dsl1p are involved in peroxisome biogenesis. Eukaryot Cell. 2009. June;8(6):830–43. doi: 10.1128/EC.00024-09 PubMed DOI PMC
Gabaldon T. Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci. 2010. March 12;365(1541):765–73. doi: 10.1098/rstb.2009.0240 PubMed DOI PMC
Philippi ML, Parish RW, Hohl HR. Histochemical and biochemical evidence for the presence of microbodies in phytophthora palmivora. Arch Microbiol. 1975. April 7;103(2):127–32. PubMed
Gonzalez NH, Felsner G, Schramm FD, Klingl A, Maier UG, Bolte K. A single peroxisomal targeting signal mediates matrix protein import in diatoms. PLoS ONE. 2011;6(9):e25316 doi: 10.1371/journal.pone.0025316 PubMed DOI PMC
Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004. October 1;306(5693):79–86. doi: 10.1126/science.1101156 PubMed DOI
Gabaldon T, Ginger ML, Michels PA. Peroxisomes in parasitic protists. Mol Biochem Parasitol. 2016. Sep—Oct;209(1–2):35–45. doi: 10.1016/j.molbiopara.2016.02.005 PubMed DOI
Kienle N, Kloepper TH, Fasshauer D. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell. BMC Evol Biol. 2016. October 18;16(1):215 doi: 10.1186/s12862-016-0790-1 PubMed DOI PMC
Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell. 2004. January 23;116(2):153–66. PubMed
Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB. Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harb Perspect Biol. 2014. October 1;6(10):a016048 doi: 10.1101/cshperspect.a016048 PubMed DOI PMC
Schwartz T, Blobel G. Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor. Cell. 2003. March 21;112(6):793–803. PubMed
Elias M, Patron NJ, Keeling PJ. The RAB family GTPase Rab1A from Plasmodium falciparum defines a unique paralog shared by chromalveolates and rhizaria. J Eukaryot Microbiol. 2009. Jul-Aug;56(4):348–56. doi: 10.1111/j.1550-7408.2009.00408.x PubMed DOI
Kremer K, Kamin D, Rittweger E, Wilkes J, Flammer H, Mahler S, et al. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathog. 2013. March;9(3):e1003213 doi: 10.1371/journal.ppat.1003213 PubMed DOI PMC
Morse D, Webster W, Kalanon M, Langsley G, McFadden GI. Plasmodium falciparum Rab1A Localizes to Rhoptries in Schizonts. PLoS ONE. 2016. June 27;11(6):e0158174 doi: 10.1371/journal.pone.0158174 PubMed DOI PMC
Eme L, Trilles A, Moreira D, Brochier-Armanet C. The phylogenomic analysis of the anaphase promoting complex and its targets points to complex and modern-like control of the cell cycle in the last common ancestor of eukaryotes. BMC Evol Biol. 2011. September 23;11:265,2148-11-265. PubMed PMC
Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 2002. September 1;16(17):2179–206. doi: 10.1101/gad.1013102 PubMed DOI
Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol. 2015. February;16(2):82–94. doi: 10.1038/nrm3934 PubMed DOI PMC
Chang L, Zhang Z, Yang J, McLaughlin SH, Barford D. Molecular architecture and mechanism of the anaphase-promoting complex. Nature. 2014. September 18;513(7518):388–93. doi: 10.1038/nature13543 PubMed DOI PMC
Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM Jr. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS ONE. 2008. Aug 6;3(8):e2879. PubMed PMC
Robert T, Nore A, Brun C, Maffre C, Crimi B, Bourbon HM, et al. The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation. Science. 2016. February 26;351(6276):943–9. doi: 10.1126/science.aad5309 PubMed DOI
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007. January 12;315(5809):207–12. doi: 10.1126/science.1132894 PubMed DOI PMC
Paul MJ, Primavesi LF, Jhurreea D, Zhang Y. Trehalose metabolism and signaling. Annu Rev Plant Biol. 2008;59:417–41. doi: 10.1146/annurev.arplant.59.032607.092945 PubMed DOI
Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot. 2011. March;62(6):1775–801. doi: 10.1093/jxb/erq411 PubMed DOI
Michel G, Tonon T, Scornet D, Cock JM, Kloareg B. Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytol. 2010. October;188(1):67–81. doi: 10.1111/j.1469-8137.2010.03345.x PubMed DOI
Yoshikawa H, Nagashima M, Morimoto K, Yamanouti Y, Yap EH, Singh M. Freeze-fracture and cytochemical studies on the in vitro cyst form of reptilian Blastocystis pythoni. J Eukaryot Microbiol. 2003. Jan-Feb;50(1):70–5. PubMed
Chen XQ, Singh M, Howe J, Ho LC, Tan SW, Yap EH. In vitro encystation and excystation of Blastocystis ratti. Parasitology. 1999. February;118 (Pt 2)(Pt 2):151–60. PubMed
Zaman V, Howe J, Ng M. Ultrastructure of Blastocystis hominis cysts. Parasitol Res. 1995;81(6):465–9. PubMed
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014. June 24;12(6):e1001889 doi: 10.1371/journal.pbio.1001889 PubMed DOI PMC
Lanuza MD, Carbajal JA, Borras R. Identification of surface coat carbohydrates in Blastocystis hominis by lectin probes. Int J Parasitol. 1996. May;26(5):527–32. PubMed
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007. April;7(4):255–66. doi: 10.1038/nri2056 PubMed DOI
Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ. Lateral Gene Transfer in the Adaptation of the Anaerobic Parasite Blastocystis to the Gut. Curr Biol. 2017. March 20;27(6):807–20. doi: 10.1016/j.cub.2017.02.003 PubMed DOI
Jarroll EL, Manning P, Berrada A, Hare D, Lindmark DG. Biochemistry and metabolism of Giardia. J Protozool. 1989. Mar-Apr;36(2):190–7. PubMed
Anderson IJ, Loftus BJ. Entamoeba histolytica: observations on metabolism based on the genome sequence. Exp Parasitol. 2005. July;110(3):173–7. doi: 10.1016/j.exppara.2005.03.010 PubMed DOI
Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients. 2011. January;3(1):118–34. doi: 10.3390/nu3010118 PubMed DOI PMC
Muller S, Kappes B. Vitamin and cofactor biosynthesis pathways in Plasmodium and other apicomplexan parasites. Trends Parasitol. 2007. March;23(3):112–21. doi: 10.1016/j.pt.2007.01.009 PubMed DOI PMC
Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, et al. Genome of the red alga Porphyridium purpureum. Nat Commun. 2013;4:1941 doi: 10.1038/ncomms2931 PubMed DOI PMC
Wisedpanichkij R, Grams R, Chaijaroenkul W, Na-Bangchang K. Confutation of the existence of sequence-conserved cytochrome P450 enzymes in Plasmodium falciparum. Acta Trop. 2011. July;119(1):19–22. doi: 10.1016/j.actatropica.2011.03.006 PubMed DOI
Furlong ST. Sterols of parasitic protozoa and helminths. Exp Parasitol. 1989. May;68(4):482–5. PubMed
Zierdt CH, Donnolley CT, Muller J, Constantopoulos G. Biochemical and ultrastructural study of Blastocystis hominis. J Clin Microbiol. 1988. May;26(5):965–70. PubMed PMC
Doyle J.J. and Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;19:11.
Rio DC, Ares M Jr, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010. June;2010(6):pdb.prot5439. PubMed
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 2004. June;14(6):1147–59. doi: 10.1101/gr.1917404 PubMed DOI PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011. May 15;29(7):644–52. doi: 10.1038/nbt.1883 PubMed DOI PMC
Boisvert S, Laviolette F, Corbeil J. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol. 2010. November;17(11):1519–33. doi: 10.1089/cmb.2009.0238 PubMed DOI PMC
Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M. Next generation sequence assembly with AMOS. Curr Protoc Bioinformatics. 2011. March;Chapter 11:Unit 11.8. PubMed PMC
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011. February 15;27(4):578–9. doi: 10.1093/bioinformatics/btq683 PubMed DOI
Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012. November;72(3):461–73. doi: 10.1111/j.1365-313X.2012.05093.x PubMed DOI
Hu H, Bandyopadhyay PK, Olivera BM, Yandell M. Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genomics. 2011. January 25;12:60,2164-12-60. PubMed PMC
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015. October 1;31(19):3210–2. doi: 10.1093/bioinformatics/btv351 PubMed DOI
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012. March 4;9(4):357–9. doi: 10.1038/nmeth.1923 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009. August 15;25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC
Stanke M, Schoffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics. 2006. February 9;7:62 doi: 10.1186/1471-2105-7-62 PubMed DOI PMC
Tempel S. Using and understanding RepeatMasker. Methods Mol Biol. 2012;859:29–51. doi: 10.1007/978-1-61779-603-6_2 PubMed DOI
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003. October 1;31(19):5654–66. doi: 10.1093/nar/gkg770 PubMed DOI PMC
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011. January;39(Database issue):D225–9. doi: 10.1093/nar/gkq1189 PubMed DOI PMC
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The Pfam protein families database. Nucleic Acids Res. 2004. January 1;32(Database issue):D138–41. doi: 10.1093/nar/gkh121 PubMed DOI PMC
Abeel T, Van Parys T, Saeys Y, Galagan J, Van de Peer Y. GenomeView: a next-generation genome browser. Nucleic Acids Res. 2012. January;40(2):e12 doi: 10.1093/nar/gkr995 PubMed DOI PMC
Zhang R, Ou HY, Gao F, Luo H. Identification of Horizontally-transferred Genomic Islands and Genome Segmentation Points by Using the GC Profile Method. Curr Genomics. 2014. April;15(2):113–21. doi: 10.2174/1389202915999140328163125 PubMed DOI PMC
Elhaik E, Graur D, Josic K. Comparative testing of DNA segmentation algorithms using benchmark simulations. Mol Biol Evol. 2010. May;27(5):1015–24. doi: 10.1093/molbev/msp307 PubMed DOI
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013. January 1;29(1):15–21. doi: 10.1093/bioinformatics/bts635 PubMed DOI PMC
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013. November 15;29(22):2933–5. doi: 10.1093/bioinformatics/btt509 PubMed DOI PMC
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996. November 1;241(3):779–86. PubMed
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2(4):953–71. doi: 10.1038/nprot.2007.131 PubMed DOI
Smith AC, Blackshaw JA, Robinson AJ. MitoMiner: a data warehouse for mitochondrial proteomics data. Nucleic Acids Res. 2012. January;40(Database issue):D1160–7. doi: 10.1093/nar/gkr1101 PubMed DOI PMC
Eme L, Moreira D, Talla E, Brochier-Armanet C. A complex cell division machinery was present in the last common ancestor of eukaryotes. PLoS ONE. 2009;4(4):e5021 doi: 10.1371/journal.pone.0005021 PubMed DOI PMC
Tonelli FM, Santos AK, Gomes DA, da Silva SL, Gomes KN, Ladeira LO, et al. Stem cells and calcium signaling. Adv Exp Med Biol. 2012;740:891–916. doi: 10.1007/978-94-007-2888-2_40 PubMed DOI PMC
Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013. October 1;29(19):2487–9. doi: 10.1093/bioinformatics/btt403 PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010. March 10;5(3):e9490 doi: 10.1371/journal.pone.0009490 PubMed DOI PMC
Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, et al. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 2002. January 1;30(1):242–4. PubMed PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004. March 19;32(5):1792–7. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006. November 1;22(21):2688–90. doi: 10.1093/bioinformatics/btl446 PubMed DOI
Feyereisen R. Insect CYP Genes and P450 Enzymes In: Insect Molecular Biology and Biochemistry. Elsevier; 2012. p. 236–316.
Nelson DR, Goldstone JV, Stegeman JJ. The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philos Trans R Soc Lond B Biol Sci. 2013. January 6;368(1612):20120474 doi: 10.1098/rstb.2012.0474 PubMed DOI PMC
Fischer M, Knoll M, Sirim D, Wagner F, Funke S, Pleiss J. The Cytochrome P450 Engineering Database: a navigation and prediction tool for the cytochrome P450 protein family. Bioinformatics. 2007. August 1;23(15):2015–7. doi: 10.1093/bioinformatics/btm268 PubMed DOI
Sirim D, Wagner F, Lisitsa A, Pleiss J. The cytochrome P450 engineering database: Integration of biochemical properties. BMC Biochem. 2009. November 12;10:27,2091-10-27. PubMed PMC
Aurrecoechea C, Brestelli J, Brunk BP, Fischer S, Gajria B, Gao X, et al. EuPathDB: a portal to eukaryotic pathogen databases. Nucleic Acids Res. 2010. January;38(Database issue):D415–9. doi: 10.1093/nar/gkp941 PubMed DOI PMC
Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol. 2008. May 30;4(5):e1000069 doi: 10.1371/journal.pcbi.1000069 PubMed DOI PMC
Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008. July;25(7):1253–6. doi: 10.1093/molbev/msn083 PubMed DOI
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008. July;25(7):1307–20. doi: 10.1093/molbev/msn067 PubMed DOI
Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009. September 1;25(17):2286–8. doi: 10.1093/bioinformatics/btp368 PubMed DOI
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010. May;59(3):307–21. doi: 10.1093/sysbio/syq010 PubMed DOI
Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009. October;23(1):205–11. PubMed
Nito K, Kamigaki A, Kondo M, Hayashi M, Nishimura M. Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. Plant Cell Physiol. 2007. June;48(6):763–74. doi: 10.1093/pcp/pcm053 PubMed DOI
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009. January;37(Database issue):D233–8. doi: 10.1093/nar/gkn663 PubMed DOI PMC
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14(9):755–63. PubMed
Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol. 2004. March 19;337(2):243–53. doi: 10.1016/j.jmb.2004.01.025 PubMed DOI
Kall L, Krogh A, Sonnhammer EL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004. May 14;338(5):1027–36. doi: 10.1016/j.jmb.2004.03.016 PubMed DOI
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007. July;35(Web Server issue):W585–7. doi: 10.1093/nar/gkm259 PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001. January 19;305(3):567–80. doi: 10.1006/jmbi.2000.4315 PubMed DOI
Hodges ME, Wickstead B, Gull K, Langdale JA. Conservation of ciliary proteins in plants with no cilia. BMC Plant Biol. 2011. December 30;11:185,2229-11-185. PubMed PMC
Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol. 2014;1079:131–46. doi: 10.1007/978-1-62703-646-7_8 PubMed DOI
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular biology and evolution. 2000;17:540 PubMed
Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria
Reduced mitochondria provide an essential function for the cytosolic methionine cycle
An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis
The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba
Anaerobic peroxisomes in Mastigamoeba balamuthi
Mitochondrial Glycolysis in a Major Lineage of Eukaryotes