Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis

. 2008 Aug ; 117 (3) : 413-24. [epub] 20080527

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18504543

One hundred and sixty-four accessions representing Czech and Slovak pea (Pisum sativum L.) varieties bred over the last 50 years were evaluated for genetic diversity using morphological, simple sequence repeat (SSR) and retrotransposon-based insertion polymorphism (RBIP) markers. Polymorphic information content (PIC) values of 10 SSR loci and 31 RBIP markers were on average high at 0.89 and 0.73, respectively. The silhouette method after the Ward clustering produced the most probable cluster estimate, identifying nine clusters from molecular data and five to seven clusters from morphological characters. Principal component analysis of nine qualitative and eight quantitative morphological parameters explain over 90 and 93% of total variability, respectively, in the first three axes. Multidimensional scaling of molecular data revealed a continuous structure for the set. To enable integration and evaluation of all data types, a Bayesian method for clustering was applied. Three clusters identified using morphology data, with clear separation of fodder, dry seed and afila types, were resolved by DNA data into 17, 12 and five sub-clusters, respectively. A core collection of 34 samples was derived from the complete collection by BAPS Bayesian analysis. Values for average gene diversity and allelic richness for molecular marker loci and diversity indexes of phenotypic data were found to be similar between the two collections, showing that this is a useful approach for representative core selection.

Zobrazit více v PubMed

Nucleic Acids Res. 1995 Nov 11;23(21):4407-14 PubMed

Theor Appl Genet. 2005 Jun;111(1):162-70 PubMed

Nucleic Acids Res. 2003 Oct 1;31(19):e115 PubMed

Nat Protoc. 2007;2(1):168-77 PubMed

Bull Math Biol. 2007 Apr;69(3):797-815 PubMed

Plant Cell Rep. 2007 Nov;26(11):1985-98 PubMed

Nat Rev Genet. 2005 Dec;6(12):946-53 PubMed

Genetics. 1964 Apr;49:725-38 PubMed

Mol Gen Genet. 1997 Feb 27;253(6):687-94 PubMed

Plant J. 1998 Dec;16(5):643-50 PubMed

Theor Appl Genet. 2006 Nov;113(7):1197-209 PubMed

Genetics. 2000 Jun;155(2):945-59 PubMed

J Appl Genet. 2006;47(3):221-30 PubMed

Theor Appl Genet. 2004 Mar;108(5):920-30 PubMed

Theor Appl Genet. 2005 Jan;110(2):294-302 PubMed

Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321-3 PubMed

Genetics. 1978 Jul;89(3):583-90 PubMed

Nat Rev Genet. 2004 Apr;5(4):251-61 PubMed

Mol Gen Genet. 1998 Oct;260(1):9-19 PubMed

Theor Appl Genet. 2004 May;108(7):1309-21 PubMed

Genetics. 1983 Nov;105(3):767-79 PubMed

Biotechnology (N Y). 1990 Oct;8(10):930-2 PubMed

Nucleic Acids Res. 1990 Nov 25;18(22):6531-5 PubMed

Genomics. 1994 Mar 15;20(2):176-83 PubMed

Science. 1997 Aug 22;277(5329):1063-6 PubMed

Theor Appl Genet. 2002 Nov;105(6-7):1019-1026 PubMed

Bioinformatics. 2004 Oct 12;20(15):2363-9 PubMed

Theor Appl Genet. 2007 Jun;115(1):1-8 PubMed

Theor Appl Genet. 2005 Oct;111(6):1022-31 PubMed

Mol Ecol. 2006 Sep;15(10):2833-43 PubMed

Cancer Res. 1967 Feb;27(2):209-20 PubMed

Genetics. 2005 Oct;171(2):741-52 PubMed

Genome. 2005 Apr;48(2):257-72 PubMed

Genetics. 2003 Aug;164(4):1567-87 PubMed

Theor Appl Genet. 1991 Nov;83(1):119-25 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...