Genome-Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum L.)

. 2019 ; 10 () : 1538. [epub] 20191126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31850030

Grantová podpora
BB/H009787/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/J/000CA392 Biotechnology and Biological Sciences Research Council - United Kingdom

Genome-wide association study (GWAS) was conducted to identify loci associated with agronomic (days to flowering, days to maturity, plant height, seed yield and seed weight), seed morphology (shape and dimpling), and seed quality (protein, starch, and fiber concentrations) traits of field pea (Pisum sativum L.). A collection of 135 pea accessions from 23 different breeding programs in Africa (Ethiopia), Asia (India), Australia, Europe (Belarus, Czech Republic, Denmark, France, Lithuania, Netherlands, Russia, Sweden, Ukraine and United Kingdom), and North America (Canada and USA), was used for the GWAS. The accessions were genotyped using genotyping-by-sequencing (GBS). After filtering for a minimum read depth of five, and minor allele frequency of 0.05, 16,877 high quality SNPs were selected to determine marker-trait associations (MTA). The LD decay (LD1/2max,90) across the chromosomes varied from 20 to 80 kb. Population structure analysis grouped the accessions into nine subpopulations. The accessions were evaluated in multi-year, multi-location trials in Olomouc (Czech Republic), Fargo, North Dakota (USA), and Rosthern and Sutherland, Saskatchewan (Canada) from 2013 to 2017. Each trait was phenotyped in at least five location-years. MTAs that were consistent across multiple trials were identified. Chr5LG3_566189651 and Chr5LG3_572899434 for plant height, Chr2LG1_409403647 for lodging resistance, Chr1LG6_57305683 and Chr1LG6_366513463 for grain yield, Chr1LG6_176606388, Chr2LG1_457185, Chr3LG5_234519042 and Chr7LG7_8229439 for seed starch concentration, and Chr3LG5_194530376 for seed protein concentration were identified from different locations and years. This research identified SNP markers associated with important traits in pea that have potential for marker-assisted selection towards rapid cultivar improvement.

Zobrazit více v PubMed

Arganosa G. C., Warkentin T. D., Racz V. J., Blade S., Hsu H., Philips C. (2006). Prediction of crude protein content in field peas grown in Saskatchewan using near infrared reflectance spectroscopy. Can. J. Plant Sci. 86, 157–159. 10.4141/P04-195 DOI

Burstin J., Gallardo K., Mir R. R., Varshney R. K., Duc G. (2011). “Improving protein content and nutrition quality,” in Biology and breeding of food legumes. Eds. Pratap A., Kumar J. (Wallingford, CT: CAB International; ), 314–328. 10.1079/9781845937669.0314 DOI

Burstin J., Salloignon P., Chabert-Martinello M., Magnin-Robert J. B., Siol M., Jacquin F., et al. (2015). Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics 16, 105. 10.1186/s12864-015-1266-1 PubMed DOI PMC

Cui C., Mei H., Liu Y., Zhang H., Zheng Y. (2017). Genetic diversity, population structure, and linkage disequilibrium of an association-mapping panel revealed by genome-wide SNP markers in sesame. Front. Plant Sci. 8, 1189. 10.3389/fpls.2017.01189 PubMed DOI PMC

Desgroux A., L'Anthoëne V., Roux-Duparque M., Rivière J. P., Aubert G., Tayeh N., et al. (2016). Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17, 124. 10.1186/s12864-016-2429-4 PubMed DOI PMC

Diapari M., Sindhu A., Warkentin T. D., Bett K. E., Ramsay L., Sharpe A. G., et al. (2015). Population structure and marker-trait association studies of iron, zinc and selenium concentration in seed of field pea (Pisum sativum L.). Mol. Breed. 35, 30. 10.1007/s11032-015-0252-2 DOI

Duc G., Agrama H., Bao S., Berger J., Bourion V., De Ron A. M., et al. (2015). Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit. Rev. Plant Sci. 34, 381–411. 10.1080/07352689.2014.898469 DOI

Dyer G. A., Lopez-Feldman A., Yunez-Naude A., Taylor J. E. (2014). Genetic erosion in maize's center of origin. PNAS 111, 14094–14099. 10.1073/pnas.1407033111 PubMed DOI PMC

Elshire R. J., Glaubitz J. C., Sun Q., Poland J. A., Kawamoto K., Buckler E. S., et al. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One 6, e19379. 10.1371/journal.pone.0019379 PubMed DOI PMC

Ferrari B., Romani M., Aubert G., Boucherot K., Burstin J., Pecetti L., et al. (2016). Association of SNP markers with agronomic and quality traits of field pea in Italy. Czech. J. Genet. Plant Breed. 52, 83–93. 10.17221/22/2016-CJGPB DOI

Flint-Garica S. A., Thornsberry J. M., Buckler E. S. (2003). Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374. 10.1146/annurev.arplant.54.031902.134907 PubMed DOI

Gali K. K., Yong L., Anoop S., Marwan D., Arun S. K., Gene A., et al. (2018). Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biol. 18, 172. 10.1186/s12870-018-1368-4 PubMed DOI PMC

Glaszmann J. C., Kilian B., Upadhyaya H. D., Varshney R. K. (2010). Accessing genetic diversity for crop improvement. Curr. Opin. Plant Biol. 13, 167–173. 10.1016/j.pbi.2010.01.004 PubMed DOI

Hamon C., Coyne C. J., McGee R. J., Lesne A. (2013). QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomycces euteiches in four sources of resistance in pea. BMC Plant Biol. 13, 45. 10.1186/1471-2229-13-45 PubMed DOI PMC

Hao D., Cheng H., Yin Z., Cui S., Zhang D., Wang H., et al. (2012). Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor. Appl. Genet. 124, 447–458. 10.1007/s00122-011-1719-0 PubMed DOI

Holdsworth W. L., Gazave E., Cheng P., Myers J. R., Gore M. A., Coyne C. J., et al. (2017). A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Horticulture Res. 4, 17017. 10.1038/hortres.2017.17 PubMed DOI PMC

Huang X., Han B. (2014). Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65, 531–551. 10.1146/annurev-arplant-050213-035715 PubMed DOI

Huang S., Gali K. K., Tar'an B., Warkentin T. D., Bueckert R. A. (2017). Pea phenology: crop potential in a warming environment. Crop Sci. 57, 1540–1551. 10.2135/cropsci2016.12.0974 DOI

Jain S., Kumar A., Mamidi S., McPhee K. (2014). Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Mol. Biotechnol. 56, 925–938. 10.1007/s12033-014-9772-y PubMed DOI

Jing R., Vershinin A., Grzebyta J., Shaw P., Smýkal P., Marshall D., et al. (2010). The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol. Biol. 10, 44. 10.1186/1471-2148-10-44 PubMed DOI PMC

Koenker R. (2017). Quantile regression: 40 years on. Annu. Rev. Econ. 9, 155–176. 10.1146/annurev-economics-063016-103651 DOI

Korte A., Farlow A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29. 10.1186/1746-4811-9-29 PubMed DOI PMC

Krajewski P., Bocianowski J., Gawlowska M., Kaczmarek Z., Pniewski T., Swiecicki W., et al. (2012). QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183, 323–336. 10.1007/s10681-011-0472-4 DOI

Kreplak J., Madoui M. A., Capal P., Novak P., Labadie K., Aubert G., et al. , et al. (2019). The reference genome of the first model for genetics, Pisum sativum L. Nat. Genet. 51, 1411–1422. 10.1038/s41588-019-0480-1 PubMed DOI

Kulaeva O. A., Zhernakov A. I., Afonin A. M., Boikov S. S., Sulima A. S., Tikhonovich I. A., et al. (2017). Pea Marker Database (PMD): a new online database combining known pea (Pisum sativum L.) gene-based markers. PloS One 12, e0186713. 10.1371/journal.pone.0186713 PubMed DOI PMC

Kumari P., Basal N., Singh A. K., Rai V. P., Srivastava C. P., Singh P. K. (2013). Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers. Genet. Mol. Res. 12, 3540–3550. 10.4238/2013.March.13.12 PubMed DOI

Levene H. (1960). “Robust tests for equality of variances,” in Contributions to probability and statistics. Ed. Olkin I. (Palo Alto, CA: Stanford Univ. Press; ), 278–292.

Lipka A. E., Tian F., Wang Q., Peiffer J., Li M., Bradbury P. J., et al. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397–2399. 10.1093/bioinformatics/bts444 PubMed DOI

Liu N., Xue Y., Guo Z., Li W., Tang J. (2016). Genome-wide association study identifies candidate genes for starch content regulation in maize kernels. Front. Plant Sci. 7, 1046. 10.3389/fpls.2016.01046 PubMed DOI PMC

Ma Y., Coyne C. J., Grusak M. A., Mazourek M., Cheng P., Main D., et al. (2017). Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol. 17, 43. 10.1186/s12870-016-0956-4 PubMed DOI PMC

Mikić A., Mihailović V., Ćupina B., Kosev V., Warkentin T., McPhee K., et al. (2011). Genetic background and agronomic value of leaf types in pea (Pisum sativum). Field Veg. Crops Res. 48, 275–284. 10.5937/ratpov1102275M DOI

Mourad A. M. I., Sallam A., Belamkar V., Wegulo S., Bowden R., Jin Y., et al. (2018). Genome-wide association study for identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front. Plant Sci. 9, 380. 10.3389/fpls.2018.00380 PubMed DOI PMC

Ouafi L., Alane F., Rahal-Bouziane H., Abdelguerfi A. (2016). Agro-morphological diversity within field pea (Pisum sativum L.) genotypes. Afr. J. Agric. Res. 11, 4039–4047. 10.5897/AJAR2016.11454 DOI

Perrier X., Flori A., Bonnot F. (2003). “Data analysis methods,” in Genetic diversity of cultivated tropical plants. Eds. Hamon P., Seguin M., Perrier X., Glaszmann J. C. (Enfield, USA: Science publishers; ), 43–76.

Raj A., Stephens M., Pritchard J. K. (2014). fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 197, 573–589. 10.1534/genetics.114.164350 PubMed DOI PMC

Rana J. C., Rana M., Sharma M., Nag A., Chahota R. K., Sharma T. R. (2017). Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol. Bio. Reptr. 35, 118–129. 10.1007/s11105-016-1006-y DOI

Shapiro S. S., Wilk M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. 10.1093/biomet/52.3-4.591 DOI

Sindhu A., Ramsay L., Sanderson L.-A., Stonehouse R., Li R., Condie J., et al. (2014). Gene-based SNP discovery and genetic mapping in pea. Theor. Appl. Genet. 127, 2225–2241. 10.1007/s00122-014-2375-y PubMed DOI PMC

Siol M., Jacquin F., Chabert-Martinello M., Smykal P., Le Paslier M. C., Aubert G., et al. (2017). Patterns of genetic structure and linkage disequilibrium in a large collection of pea germplasm. G3 7, 2461–2471. 10.1534/g3.117.043471 PubMed DOI PMC

Smitchger J. A. (2017). Quantitative trait loci associated with lodging, stem strength, yield, and other important agronomic traits in dry field peas. https://zenodo.org/record/840399#.Wizg-k1hiM8 Accessed 09 Dec 2017.

Smýkal P., Hýbl M., Corander J., Jarkovsky J., Flavell A., Griga M. (2008). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor. Appl. Genet. 117, 413–424. 10.1007/s00122-008-0785-4 PubMed DOI

Sul J. H., Bilow M., Yang W.-Y., Kostem E., Furlotte N., He D., et al. (2016). Accounting for population structure in gene-by-environment interactions in genome-wide association studies using mixed models. PloS Genet. 12, e1005849. 10.1371/journal.pgen.1005849 PubMed DOI PMC

Sun C., Zhang F., Yan X., Zhang X., Dong Z., Cui D., et al. (2017). Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotech. J. 15, 953–969. 10.1111/pbi.12690 PubMed DOI PMC

Tang Y., Liu X., Wang J., Li M., Wang Q., Tian F., et al. (2016). GAPIT Version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome 9. 10.3835/plantgenome2015.11.0120 PubMed DOI

Tar'an B., Warkentin T., Somers D. J., Miranda D., Vandenberg A., Blade S., et al. (2003). Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor. Appl. Genet. 107, 1482–1491. 10.1007/s00122-003-1379-9 PubMed DOI

Tar'an B., Warkentin T., Somers D. J., Miranda D., Vandenberg A., Blade S., et al. (2004). Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136, 297–306. 10.1023/B:EUPH.0000032721.03075.a0 DOI

Tar'an B., Zhang C., Warkentin T., Tullu A., Vandenberg A. (2005). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48, 257–272. 10.1139/g04-114 PubMed DOI

Tayeh N., Aluome C., Falque M., Jacquin F., Klein A., Chauveau A., et al. (2015. a). Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map. Plant J. 84, 1257–1273. 10.1111/tpj.13070 PubMed DOI

Tayeh N., Aubert G., Pilet-Nayel M. L., Lejeune-Henaut I., Warkentin T. D., Burstin J. (2015. b). Genomic tools in pea breeding programs: status and perspectives. Front. Plant Sci. 6, 1037. 10.3389/fpls.2015.01037 PubMed DOI PMC

Ubayasena K., Bett K., Tar'an B., Warkentin T. D. (2011). Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L.). Genome 54, 261–272. 10.1139/g10-117 PubMed DOI

Warkentin T. D., Smykal P., Coyne C. J., Weeden N., Domoney C., Bing D., et al. (2015). “Pea (Pisum sativum L.),” in Grain Legumes. Ed. De Ron A. M. (New York: Springer; ), 37–83. 10.1007/978-1-4939-2797-5_2 DOI

Weller J. L., Ortega R. (2015). Genetic control of flowering time in legumes. Front. Plant Sci. 6, 207. 10.3389/fpls.2015.00207 PubMed DOI PMC

Wu X., Li N., Hao J., Hu J., Zhang X., Matthew W. B. (2017). Genetic diversity of Chinese and global pea (Pisum sativum L.) collections. Crop Sci. 57, 1574–1584. 10.2135/cropsci2016.04.0271 DOI

Xu Y., Li P., Yang Z., Xu C. (2017). Genetic mapping of quantitative trait loci in crops. Crop J. 5, 175–184. 10.1016/j.cj.2016.06.003 DOI

Yu J., Pressoir G., Briggs W., Vroh B. I., Yamasaki M., Doebley J., et al. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208. 10.1038/ng1702 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...