Patterns of Genetic Structure and Linkage Disequilibrium in a Large Collection of Pea Germplasm
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28611254
PubMed Central
PMC5555454
DOI
10.1534/g3.117.043471
PII: g3.117.043471
Knihovny.cz E-zdroje
- Klíčová slova
- FST, Pisum sativum, genetic diversity, linkage disequilibrium,
- MeSH
- Bayesova věta MeSH
- ekotyp MeSH
- frekvence genu genetika MeSH
- genom rostlinný MeSH
- hrách setý genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- roční období MeSH
- semena rostlinná genetika MeSH
- vazebná nerovnováha genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pea (Pisum sativum, L.) is a major pulse crop used both for animal and human alimentation. Owing to its association with nitrogen-fixing bacteria, it is also a valuable component for low-input cropping systems. To evaluate the genetic diversity and the scale of linkage disequilibrium (LD) decay in pea, we genotyped a collection of 917 accessions, gathering elite cultivars, landraces, and wild relatives using an array of ∼13,000 single nucleotide polymorphisms (SNP). Genetic diversity is broadly distributed across three groups corresponding to wild/landraces peas, winter types, and spring types. At a finer subdivision level, genetic groups relate to local breeding programs and type usage. LD decreases steeply as genetic distance increases. When considering subsets of the data, LD values can be higher, even if the steep decay remains. We looked for genomic regions exhibiting high level of differentiation between wild/landraces, winter, and spring pea, respectively. Two regions on linkage groups 5 and 6 containing 33 SNPs exhibit stronger differentiation between winter and spring peas than would be expected under neutrality. Interestingly, QTL for resistance to cold acclimation and frost resistance have been identified previously in the same regions.
INRA US 1279 Etude du Polymorphisme des Génomes Végétaux Université Paris Saclay 91000 Evry France
Institut National de la Recherche Agronomique 1347 Agroécologie 21065 Dijon France
Palacky University Faculty of Science Department of Botany Holice 783 71 Olomouc Czech Republic
Zobrazit více v PubMed
Alves-Carvalho S., Aubert G., Carrère S., Cruaud C., Brochot A. L., et al. , 2015. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 84: 1–19. PubMed
Baranger A., Aubert G., Arnau G., Lainé A. L., Deniot G., et al. , 2004. Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor. Appl. Genet. 108: 1309–1321. PubMed
Burstin J., Salloignon P., Chabert-Martinello M., Magnin-Robert J. B., Siol M., et al. , 2015. Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics 16: 105–121. PubMed PMC
Cavanagh C. R., Chao S., Wang S., Huang B. E., Stephen S., et al. , 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. USA 110: 8057–8062. PubMed PMC
Charlesworth B., Charlesworth D., 2010. Elements of Evolutionary Genetics. Roberts and Company publishers, Greenwood Village, CO.
Clark R. M., Linton E., Messing J., Doebley J. F., 2004. Pattern of diversity in the genomic region near the domestication gene tb1. Proc. Natl. Acad. Sci. USA 101: 700–707. PubMed PMC
Comadran J., Kilian B., Russell J., Ramsay L., Stein N., et al. , 2012. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 44: 1388–1392. PubMed
De Mita S., Siol M., 2012. EggLib: processing, analysis and simulation tools for population genetics and genomics. BMC Genet. 13: 27. PubMed PMC
Desgroux A., Anthoëne V. L., Roux-Duparque M., Rivière J., Aubert G., et al. , 2016. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17: 124–144. PubMed PMC
Dolezel J., Greilhuber J., 2010. Nuclear genome size: are we getting closer? Cytometry A 77: 635–642. PubMed
Foll M., Gaggiotti O., 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 190: 977–993. PubMed PMC
Gao H., Williamson S., Bustamante C. D., 2007. A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176: 1635–1651. PubMed PMC
Gianola D., Qanbari S., Simianer H., 2013. An evaluation of a novel estimator of linkage disequilibrium. Heredity 111: 275–285. PubMed PMC
Hecht V., Laurie R. E., Vander Schoor J. K., Ridge S., Knowles C. L., et al. , 2011. The Pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23: 147–161. PubMed PMC
Heffner E. L., Jannink J. L., Sorrells M. E., 2011. Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4: 65–75.
Huang X., Wei X., Sang T., Zhao Q., Feng Q., et al. , 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42: 961–967. PubMed
Jakobsson M., Rosenberg N. A., 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. PubMed
Jing R., Johnson R., Seres A., Kiss G., Ambrose M. J., et al. , 2007. Gene-based sequence diversity analysis of field pea (Pisum). Genetics 177: 2263–2275. PubMed PMC
Jing R., Vershinin A., Grzebyta J., Shaw P., Smýkal P., et al. , 2010. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol. Biol. 10: 44–63. PubMed PMC
Jombart T., Devillard S., Balloux F., 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11: 94–108. PubMed PMC
Jost D., 2008. G(ST) and its relatives do not measure differentiation. Mol. Ecol. 17: 4015–4026. PubMed
Klein A., Houtin H., Rond C., Marget P., Jacquin F., et al. , 2014. QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor. Appl. Genet. 127: 1319–1330. PubMed
Ladizinsky G., Abbo S., 2016. The Search for Wild Relatives of Cool Season Legumes. Springer International Publishing, New York.
Lorenz A. J., Smith K. P., Jannink J. L., 2012. Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci. 52: 1609–1621.
Mangin B., Siberchicot A., Nicolas S., Doligez A., This P., et al. , 2012. Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108: 285–291. PubMed PMC
Mather K. A., Caicedo A. L., Polato N. R., Olsen K. M., McCouch S., et al. , 2007. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177: 2223–2232. PubMed PMC
Maxted N., Ambrose N., 2001. Plant Genetic Resources of Legumes in the Mediterranean, chap 10. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Nelson M. N., Ksiazkiewicz M., Rychel S., Besharat N., Taylor C. M., et al. , 2017. The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol. 213: 220–232. PubMed
Pasam R. K., Sharma R., Malosetti M., van Eeuwijk F. A., Haseneyer G., et al. , 2012. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol. 12: 16–37. PubMed PMC
Pennycooke J. C., Cheng H., Stockinger E. J., 2008. Comparative genomic sequence and expression analyses of Medicago truncatula and Alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol. 146: 1242–1256. PubMed PMC
Pritchard J. K., Stephens M., Donnelly P. J., 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PubMed PMC
Raj A., Stephens M., Pritchard J. K., 2014. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197: 573–589. PubMed PMC
Rincent R., Laloë D., Nicolas S., Altmann T., Brunel D., et al. , 2012. Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192: 715–728. PubMed PMC
Ross-Ibarra J., Morrell P. L., Gaut B. S., 2007. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc. Natl. Acad. Sci. USA 104(Suppl. 1):8641–8648. PubMed PMC
Roullier C., Benoit L., McKey D. B., Lebot V., 2013. Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination. Proc. Natl. Acad. Sci. USA 110: 2205–2210. PubMed PMC
Schmutz J., McClean P. E., Mamidi S., Wu G. A., Cannon S. B., et al. , 2013. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46: 707–713. PubMed PMC
Siol M., Wright S. I., Barrett S. C. H., 2010. The population genomics of plant adaptation. New Phytol. 188: 313–332. PubMed
Smýkal P., Aubert G., Burstin J., Coyne C. J., Ellis N. T. H., et al. , 2012. Pea (Pisum sativum L.) in the genomic era. Agronomy 2: 74–115.
Tayeh N., Barhman N., Devaux R., Bluteau A., Prosperi J. M., et al. , 2013. A high-density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI. Mol. Breed. 32: 279–289.
Tayeh N., Aluome C., Falque M., Jacquin F., Klein A., et al. , 2015a Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high density, high-resolution consensus genetic map. Plant J. 84: 1257–1273. PubMed
Tayeh N., Klein A., Le Paslier M.C., Jacquin F., Houtin H., et al. , 2015b Genomic prediction in pea: effect of marker density and training population size and composition on accuracy of prediction. Front. Plant Sci. 6: 941–951. PubMed PMC
Vershinin A. V., Allnutt T. R., Knox M. R., Ambrose M. J., Ellis N.T.H., 2003. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol. Biol. Evol. 20: 2067–2075. PubMed
Vigouroux Y., McMullen M., Hittinger C. T., Houchins K., Schulz L., et al. , 2002. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc. Natl. Acad. Sci. USA 99: 9650–9655. PubMed PMC
Weeden N. F., 2007. Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann. Bot. 100: 1017–1025. PubMed PMC
Zohary D., Hopf M., 2000. Domestication of Plants in the Old World. Oxford University Press, Oxford, UK.
Molecular Evidence for Two Domestication Events in the Pea Crop