Genotype and phenotype data standardization, utilization and integration in the big data era for agricultural sciences

. 2023 Dec 11 ; 2023 () : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38079567

Grantová podpora
National Science Foundation (NSF)
2126334 Research Coordination Network (RCN)
National Science Foundation (NSF)
2126334 Research Coordination Network (RCN)

Large-scale genotype and phenotype data have been increasingly generated to identify genetic markers, understand gene function and evolution and facilitate genomic selection. These datasets hold immense value for both current and future studies, as they are vital for crop breeding, yield improvement and overall agricultural sustainability. However, integrating these datasets from heterogeneous sources presents significant challenges and hinders their effective utilization. We established the Genotype-Phenotype Working Group in November 2021 as a part of the AgBioData Consortium (https://www.agbiodata.org) to review current data types and resources that support archiving, analysis and visualization of genotype and phenotype data to understand the needs and challenges of the plant genomic research community. For 2021-22, we identified different types of datasets and examined metadata annotations related to experimental design/methods/sample collection, etc. Furthermore, we thoroughly reviewed publicly funded repositories for raw and processed data as well as secondary databases and knowledgebases that enable the integration of heterogeneous data in the context of the genome browser, pathway networks and tissue-specific gene expression. Based on our survey, we recommend a need for (i) additional infrastructural support for archiving many new data types, (ii) development of community standards for data annotation and formatting, (iii) resources for biocuration and (iv) analysis and visualization tools to connect genotype data with phenotype data to enhance knowledge synthesis and to foster translational research. Although this paper only covers the data and resources relevant to the plant research community, we expect that similar issues and needs are shared by researchers working on animals. Database URL: https://www.agbiodata.org.

Zobrazit více v PubMed

Scossa F., Alseekh S. and Fernie A.R. (2021) Integrating multi-omics data for crop improvement. J. Plant Physiol., 257, 153352. PubMed

Yang W., Feng H., Zhang X.  et al. (2020) Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol. Plant, 13, 187–214. PubMed

Borgman C.L. (2015) Big Data, Little Data, No Data: Scholarship in the Networked World. The MIT Press, Cambridge, MA.

Mosconi G., Li Q., Randall D.  et al. (2019) Three gaps in opening science. Comput. Support Coop. Work (CSCW), 28, 749–789.

Federer L.M. (2019) Who, what, when, where, and why? Quantifying and understanding biomedical data reuse. University of Maryland.

Wallis J.C., Rolando E. and Borgman C.L. (2013) If we share data, will anyone use them? Data sharing and reuse in the long tail of science and technology. PLoS One, 8, e67332. PubMed PMC

Pasquetto I.V., Randles B.M. and Borgman C.L. (2017) On the reuse of scientific data. Data Sci. J., 16, 1–9.

Culina A., Crowther T.W., Ramakers J.J.C.  et al. (2018) How to do meta-analysis of open datasets. Nat. Ecol. Evol., 2, 1053–1056. PubMed

He L. and Nahar V. (2016) Reuse of scientific data in academic publications: an investigation of Dryad digital repository. J. Inf. Manag., 65, 478–494.

Pasquetto I.V., Borgman C.L. and Wofford M.F. (2019) Uses and reuses of scientific data: the data creators’ advantage. Harv. Data Sci. Rev., 1.

Rung J. and Brazma A. (2013) Reuse of public genome-wide gene expression data. Nat. Rev. Genet., 14, 89–99. PubMed

Karasti H. and Blomberg J. (2018) Studying infrastructuring ethnographically. Comput. Support. Coop. Work (CSCW), 27, 233–265.

Hanson B., Sugden A. and Alberts B. (2011) Making data maximally available. Science, 331, 649. PubMed

Leonelli S. (2013) Integrating data to acquire new knowledge: three modes of integration in plant science. Stud. Hist. Philos. Sci. Part C, 44, 503–514. PubMed

Kattge J., Bonisch G., Diaz S.  et al. (2020) TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol., 26, 119–188. PubMed

Harper L., Campbell J., Cannon E.K.S.  et al. (2018) AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture. Database, 2018, bay088. PubMed PMC

Adam-Blondon A.F., Alaux M., Pommier C.  et al. (2016) Towards an open grapevine information system. Hortic. Res., 3, 16056. PubMed PMC

Dempsey L. and Heery R. (1998) Metadata: a current view of practice and issues. J. Doc., 54, 145–172.

Mayernik M.S. and Acker A. (2018) Tracing the traces: the critical role of metadata within networked communications. J. Assoc. Inf. Sci. Technol., 69, 177–180.

Edwards D. (2016) The impact of genomics technology on adapting plants to climate change. In: Edwards D, Batley J (eds) Plant Genomics and Climate Change. Springer, New York, NY, pp. 173–178.

Hu T., Chitnis N., Monos D.  et al. (2021) Next-generation sequencing technologies: an overview. Hum. Immunol., 82, 01–811. PubMed

Smith L.M., Fung S., Hunkapiller M.W.  et al. (1985) The synthesis of oligonucleotides containing an aliphatic amino group at the 5ʹ terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Res., 13, 2399–2412. PubMed PMC

Sanger F., Nicklen S. and Coulson A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A., 74, 5463–5467. PubMed PMC

Crossley B.M., Bai J., Glaser A.  et al. (2020) Guidelines for Sanger sequencing and molecular assay monitoring. J. Vet. Diagn. Invest., 32, 767–775. PubMed PMC

Mardis E.R. (2008) The impact of next-generation sequencing technology on genetics. Trends Genet., 24, 133–141. PubMed

van Dijk E.L., Auger H., Jaszczyszyn Y.  et al. (2014) Ten years of next-generation sequencing technology. Trends Genet., 30, 418–426. PubMed

Buermans H.P. and den Dunnen J.T. (2014) Next generation sequencing technology: advances and applications. Biochim. Biophys. Acta, 1842, 1932–1941. PubMed

Slatko B.E., Gardner A.F. and Ausubel F.M. (2018) Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol., 122, e59. PubMed PMC

Ekblom R. and Wolf J.B. (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl., 7, 1026–1042. PubMed PMC

English A.C., Richards S., Han Y.  et al. (2012) Mind the gap: upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS One, 7, e47768. PubMed PMC

Huddleston J., Ranade S., Malig M.  et al. (2014) Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res., 24, 688–696. PubMed PMC

Wang Y., Zhao Y., Bollas A.  et al. (2021) Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol., 39, 1348–1365. PubMed PMC

Marx V. (2023) Method of the year: long-read sequencing. Nat. Methods, 20, 6–11. PubMed

Chen P., Sun Z., Wang J.  et al. (2023) Portable nanopore-sequencing technology: trends in development and applications. Front Microbiol., 14, 1043967. PubMed PMC

Wick R.R., Judd L.M. and Holt K.E. (2019) Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol., 20, 129. PubMed PMC

Grodzicker T., Williams J., Sharp P.  et al. (1975) Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harb. Symp. Quant. Biol., 39, 439–446. PubMed

Yang W., Kang X., Yang Q.  et al. (2013) Review on the development of genotyping methods for assessing farm animal diversity. J. Anim. Sci. Biotechnol., 4, 2. PubMed PMC

Carvalho B., Bengtsson H., Speed T.P.  et al. (2007) Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics, 8, 485–499. PubMed

Chagne D., Crowhurst R.N., Troggio M.  et al. (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One, 7, e31745. PubMed PMC

Bayer M.M., Rapazote-Flores P., Ganal M.  et al. (2017) Development and evaluation of a barley 50k iSelect SNP Array. Front. Plant Sci., 8, 1792. PubMed PMC

Verde I., Jenkins J., Dondini L.  et al. (2017) The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics, 18, 225. PubMed PMC

Ganal M.W., Polley A., Graner E.M.  et al. (2012) Large SNP arrays for genotyping in crop plants. J. Biosci., 37, 821–828. PubMed

McKain M.R., Johnson M.G., Uribe-Convers S.  et al. (2018) Practical considerations for plant phylogenomics. Appl. Plant Sci., 6, e1038. PubMed PMC

Kumar P., Choudhary M., Jat B.S.  et al. (2021) Skim sequencing: an advanced NGS technology for crop improvement. J. Genet., 100, 1–10. PubMed

Schmickl R., Liston A., Zeisek V.  et al. (2016) Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae). Mol. Ecol. Resour., 16, 1124–1135. PubMed

Head S.R., Komori H.K., LaMere S.A.  et al. (2014) Library construction for next-generation sequencing: overviews and challenges. Biotechniques, 56, 61–64, 66, 68, passim. PubMed PMC

Deschamps S., Llaca V. and May G.D. (2012) Genotyping-by-Sequencing in Plants. Biology, 1, 460–483. PubMed PMC

Elshire R.J., Glaubitz J.C., Sun Q.  et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379. PubMed PMC

Andrews K.R., Good J.M., Miller M.R.  et al. (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet., 17, 81–92. PubMed PMC

Miller M.R., Dunham J.P., Amores A.  et al. (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res., 17, 240–248. PubMed PMC

Danecek P., Auton A., Abecasis G.  et al. (2011) The variant call format and VCFtools. Bioinformatics, 27, 2156–2158. PubMed PMC

Lyon M.S., Andrews S.J., Elsworth B.  et al. (2021) The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol., 22, 32. PubMed PMC

Leinonen R., Sugawara H., Shumway M.  et al. (2011) The sequence read archive. Nucleic Acids Res., 39, D19–21. PubMed PMC

Kodama Y., Shumway M., Leinonen R.  et al. (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res., 40, D54–56. PubMed PMC

Edgar R., Domrachev M. and Lash A.E. (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 30, 207–210. PubMed PMC

Barrett T. and Edgar R. (2006) Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol., 411, 352–369. PubMed PMC

Clough E. and Barrett T. (2016) The gene expression omnibus database. In: Statistical Genomics: Methods and Protocols, pp. 93–110. PubMed PMC

Tateno Y., Imanishi T., Miyazaki S.  et al. (2002) DNA Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Res., 30, 27–30. PubMed PMC

Miyazaki S., Sugawara H., Ikeo K.  et al. (2004) DDBJ in the stream of various biological data. Nucleic Acids Res., 32, D31–34. PubMed PMC

Ogasawara O., Kodama Y., Mashima J.  et al. (2020) DDBJ Database updates and computational infrastructure enhancement. Nucleic Acids Res., 48, D45–D50. PubMed PMC

Cochrane G., Karsch-Mizrachi I., Nakamura Y.  et al. (2011) The international nucleotide sequence database collaboration. Nucleic Acids Res., 39, D15–18. PubMed PMC

Cochrane G., Karsch-Mizrachi I., Takagi T.  et al. (2016) The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res., 44, D48–50. PubMed PMC

(2020) Promoting best practice in nucleotide sequence data sharing. Sci. Data, 7, 152. PubMed PMC

Nordberg H., Cantor M., Dusheyko S.  et al. (2014) The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Res., 42, D26–31. PubMed PMC

Sreedasyam A., Plott C., Hossain M.S.  et al. (2023) JGI Plant Gene Atlas: an updateable transcriptome resource to improve functional gene descriptions across the plant kingdom. Nucleic Acids Res., 51, 8383–8401. PubMed PMC

Goodstein D.M., Shu S., Howson R.  et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res., 40, D1178–1186. PubMed PMC

Members C.-N. and Partners (2021) Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2021. Nucleic Acids Res., 49, D18–D28. PubMed PMC

Cezard T., Cunningham F., Hunt S.E.  et al. (2022) The European Variation Archive: a FAIR resource of genomic variation for all species. Nucleic Acids Res., 50, D1216–D1220. PubMed PMC

Song S., Tian D., Li C.  et al. (2018) Genome Variation Map: a data repository of genome variations in BIG Data Center. Nucleic Acids Res., 46, D944–D949. PubMed PMC

Chang Y., Song X., Zhang Q.  et al. (2022) Robust CRISPR/Cas9 mediated gene editing of JrWOX11 manipulated adventitious rooting and vegetative growth in a nut tree species of walnut. Sci. Hortic., 303, 111199.

International Hapmap C. (2003) The International HapMap Project. Nature, 426, 789–796. PubMed

Jung S., Jesudurai C., Staton M.  et al. (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinf., 5, 130. PubMed PMC

Jung S., Lee T., Cheng C.H.  et al. (2019) 15 years of GDR: new data and functionality in the Genome Database for Rosaceae. Nucleic Acids Res., 47, D1137–D1145. PubMed PMC

Yu J., Jung S., Cheng C.H.  et al. (2014) CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res., 42, D1229–1236. PubMed PMC

Yu J., Jung S., Cheng C.H.  et al. (2021) CottonGen: the community database for cotton genomics, genetics, and breeding research. Plants, 10, 2805. PubMed PMC

Grant D., Nelson R.T., Cannon S.B.  et al. (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res., 38, D843–846. PubMed PMC

Brown A.V., Conners S.I., Huang W.  et al. (2021) A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res., 49, D1496–D1501. PubMed PMC

Gonzales M.D., Archuleta E., Farmer A.  et al. (2005) The Legume Information System (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res., 33, D660–665. PubMed PMC

Dash S., Campbell J.D., Cannon E.K.  et al. (2016) Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family. Nucleic Acids Res., 44, D1181–1188. PubMed PMC

Fernandez-Pozo N., Menda N., Edwards J.D.  et al. (2015) The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res., 43, D1036–1041. PubMed PMC

Foerster H., Bombarely A., Battey J.N.D.  et al. (2018) SolCyc: a database hub at the Sol Genomics Network (SGN) for the manual curation of metabolic networks in Solanum and Nicotiana specific databases. Database (Oxford), 2018, bay035. PubMed PMC

Lawrence C.J. (2007) MaizeGDB. Methods Mol. Biol., 406, 331–345. PubMed

Portwood J.L.  2nd, Woodhouse M.R., Cannon E.K.  et al. (2019) MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res., 47, D1146–D1154. PubMed PMC

Wegrzyn J.L., Lee J.M., Tearse B.R.  et al. (2008) TreeGenes: a forest tree genome database. Int. J. Plant Genomics, 2008, 412875. PubMed PMC

Falk T., Herndon N., Grau E.  et al. (2019) Growing and cultivating the forest genomics database, TreeGenes. Database, 2019, bay084. PubMed PMC

Garcia-Hernandez M., Berardini T.Z., Chen G.  et al. (2002) TAIR: a resource for integrated Arabidopsis data. Funct. Integr. Genomics, 2, 239–253. PubMed

Poole R.L. (2007) The TAIR database. Methods Mol. Biol., 406, 179–212. PubMed

Sanderson L.A., Caron C.T., Tan R.  et al. (2019) KnowPulse: A web-resource focused on diversity data for pulse crop improvement. Front. Plant Sci., 10, 965. PubMed PMC

Smith R.N., Aleksic J., Butano D.  et al. (2012) InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data. Bioinformatics, 28, 3163–3165. PubMed PMC

Kalderimis A., Lyne R., Butano D.  et al. (2014) InterMine: extensive web services for modern biology. Nucleic Acids Res., 42, W468–472. PubMed PMC

Tello-Ruiz M.K., Jaiswal P. and Ware D. (2022) Gramene: a resource for comparative analysis of plants genomes and pathways. Methods Mol. Biol., 2443, 101–131. PubMed

Ware D. (2007) Gramene. Methods Mol. Biol., 406, 315–329. PubMed

Ware D.H., Jaiswal P., Ni J.  et al. (2002) Gramene, a tool for grass genomics. Plant Physiol., 130, 1606–1613. PubMed PMC

Gladman N., Olson A., Wei S.  et al. (2022) SorghumBase: a web-based portal for sorghum genetic information and community advancement. Planta, 255, 35. PubMed PMC

Lyne R., Sullivan J., Butano D.  et al. (2015) Cross-organism analysis using InterMine. Genesis, 53, 547–560. PubMed PMC

Paajanen P., Kettleborough G., Lopez-Girona E.  et al. (2019) A critical comparison of technologies for a plant genome sequencing project. Gigascience, 8, giy163. PubMed PMC

Sun Y., Shang L., Zhu Q.H.  et al. (2022) Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci., 27, 391–401. PubMed

Pucker B., Irisarri I., de Vries J.  et al. (2022) Plant genome sequence assembly in the era of long reads: Progress, challenges and future directions. Quant. Plant Biol., 3, e5. PubMed PMC

Shi J., Tian Z., Lai J.  et al. (2023) Plant pan-genomics and its applications. Mol. Plant, 16, 168–186. PubMed

Ho S.S., Urban A.E. and Mills R.E. (2020) Structural variation in the sequencing era. Nat. Rev. Genet., 21, 171–189. PubMed PMC

Quan C., Lu H., Lu Y.  et al. (2022) Population-scale genotyping of structural variation in the era of long-read sequencing. Comput. Struct. Biotechnol. J., 20, 2639–2647. PubMed PMC

Sun S., Wang X., Wang K.  et al. (2020) Dissection of complex traits of tomato in the post-genome era. Theor. Appl. Genet., 133, 1763–1776. PubMed

Lye Z.N. and Purugganan M.D. (2019) Copy number variation in domestication. Trends Plant Sci., 24, 352–365. PubMed

Hovhannisyan G., Harutyunyan T., Aroutiounian R.  et al. (2019) DNA copy number variations as markers of mutagenic impact. Int. J. Mol. Sci., 20, 4723. PubMed PMC

Dolatabadian A., Patel D.A., Edwards D.  et al. (2017) Copy number variation and disease resistance in plants. Theor. Appl. Genet., 130, 2479–2490. PubMed

Yuan Y., Bayer P.E., Batley J.  et al. (2021) Current status of structural variation studies in plants. Plant Biotechnol. J., 19, 2153–2163. PubMed PMC

Alonge M., Wang X., Benoit M.  et al. (2020) Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 182, 145–161 e123. PubMed PMC

Chawla H.S., Lee H., Gabur I.  et al. (2021) Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnol. J., 19, 240–250. PubMed PMC

Li M., Xia L., Zhang Y.  et al. (2019) Plant editosome database: a curated database of RNA editosome in plants. Nucleic Acids Res., 47, D170–D174. PubMed PMC

Thao N.P. and Tran L.S. (2016) Enhancement of plant productivity in the post-genomics era. Curr. Genomics, 17, 295–296. PubMed PMC

Pan Q., Wei J., Guo F.  et al. (2019) Trait ontology analysis based on association mapping studies bridges the gap between crop genomics and Phenomics. BMC Genomics, 20, 443. PubMed PMC

Danecek P., Bonfield J.K., Liddle J.  et al. (2021) Twelve years of SAMtools and BCFtools. Gigascience, 10, giab008. PubMed PMC

Brachi B., Morris G.P. and Borevitz J.O. (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol., 12, 232. PubMed PMC

Gali K.K., Sackville A., Tafesse E.G.  et al. (2019) Genome-wide association mapping for agronomic and seed quality traits of field pea (Pisum sativum L.). Front. Plant Sci., 10, 1538. PubMed PMC

Khan S.U., Saeed S., Khan M.H.U.  et al. (2021) Advances and challenges for QTL analysis and GWAS in the plant-breeding of high-yielding: a focus on rapeseed. Biomolecules, 11, 1516. PubMed PMC

Tibbs Cortes L., Zhang Z. and Yu J. (2021) Status and prospects of genome-wide association studies in plants. Plant Genome., 14, e20077. PubMed

Liu J., Hua W., Hu Z.  et al. (2015) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl. Acad. Sci. U.S.A., 112, E5123–5132. PubMed PMC

Christeller J.T., McGhie T.K., Johnston J.W.  et al. (2019) Quantitative trait loci influencing pentacyclic triterpene composition in apple fruit peel. Sci. Rep., 9, 18501. PubMed PMC

Chagné D., Ryan J., Saeed M.  et al. (2019) A high density linkage map and quantitative trait loci for tree growth for New Zealand mānuka (Leptospermum scoparium). N. Z. J. Crop Hortic. Sci., 47, 261–272.

Budhlakoti N., Kushwaha A.K., Rai A.  et al. (2022) Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Front. Genet., 13, 832153. PubMed PMC

Bhat J.A., Ali S., Salgotra R.K.  et al. (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet., 7, 221. PubMed PMC

Crossa J., Perez-Rodriguez P., Cuevas J.  et al. (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci., 22, 961–975. PubMed

Fasoula D.A., Ioannides I.M. and Omirou M. (2019) Phenotyping and plant breeding: overcoming the barriers. Front. Plant Sci., 10, 1713. PubMed PMC

Akiyama K., Kurotani A., Iida K.  et al. (2014) RARGE II: an integrated phenotype database of Arabidopsis mutant traits using a controlled vocabulary. Plant Cell Physiol., 55, e4. PubMed PMC

Miroslaw M. (2001) Officially Released Mutant Varieties – The FAO/IAEA Database. Plant Cell Tissue Organ. Cult., 65, 175–177.

Zheng Y., Zhang N., Martin G.B.  et al. (2019) Plant Genome Editing Database (PGED): a call for submission of information about genome-edited plant Mutants. Mol. Plant, 12, 127–129. PubMed

Shikata M., Hoshikawa K., Ariizumi T.  et al. (2016) TOMATOMA update: phenotypic and metabolite information in the micro-tom mutant resource. Plant Cell Physiol., 57, e11. PubMed

McGill B.J., Enquist B.J., Weiher E.  et al. (2006) Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178–185. PubMed

Violle V., Navas M., Vile D.  et al. (2007) Let the concept of trait be functional!  Oikos, 116, 882–892.

Schneider F.D., Fichtmueller D., Gossner M.M.  et al. (2019) Towards an ecological trait‐data standard. Meth. Ecol. Evolut, 10, 2006–2019.

Allan E., Manning P., Alt F.  et al. (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett., 18, 834–843. PubMed PMC

Diaz S., Quetier F., Caceres D.M.  et al. (2011) Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature’s benefits to society. Proc. Natl. Acad. Sci. U.S.A., 108, 895–902. PubMed PMC

Lavorel S. and Grigulis K. (2012) How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J. Ecol., 100, 128–140.

Ni J., Pujar A., Youens-Clark K.  et al. (2009) Gramene QTL database: development, content and applications. Database (Oxford), 2009, bap005. PubMed PMC

Singh K., Batra R., Sharma S.  et al. (2021) WheatQTLdb: a QTL database for wheat. Mol. Genet. Genomics, 296, 1051–1056. PubMed

Reich P.B., Wright I.J. and Lusk C.H. (2007) Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl., 17, 1982–1988. PubMed

Kissling W.D., Walls R., Bowser A.  et al. (2018) Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol., 2, 1531–1540. PubMed

Peat H.J. and Fitter A.H. (1994) A comparative study of the distribution and density of stomata in the British flora. Biol. J. Linn. Soc. Lond., 52, 377–393. PubMed PMC

Poschlod P., Kleyer M., Jackel A.-K.  et al. (2003) BIOPOP — A database of plant traits and internet application for nature conservation. Folia Geobot., 38, 263–271.

Garcia-Recio A., Santos-Gomez A., Soto D.  et al. (2021) GRIN database: a unified and manually curated repertoire of GRIN variants. Hum. Mutat., 42, 8–18. PubMed

Kühn I., Durka W. and Klotz S. (2004) BiolFlor: a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib., 10, 363–365.

Kleyer M., Bekker R.M., Knevel I.C.  et al. (2008) The LEDA Traitbase: a database of life history traits of the Northwest European flora. J. Ecol., 96, 1266–1274.

Tavsanoglu C. and Pausas J.G. (2018) A functional trait database for Mediterranean Basin plants. Sci. Data, 5, 180135. PubMed PMC

Falster D., Gallagher R., Wenk E.H.  et al. (2021) AusTraits, a curated plant trait database for the Australian flora. Sci. Data, 8, 254. PubMed PMC

Houle D., Govindaraju D.R. and Omholt S. (2010) Phenomics: the next challenge. Nat. Rev. Genet., 11, 855–866. PubMed

Hati A.J. and Singh R.R. (2021) Artificial intelligence in smart farms: plant phenotyping for species recognition and health condition identification using deep learning. AI, 2, 274–289.

Saleem M.H., Potgieter J. and Mahmood Arif K. (2019) Plant disease detection and classification by deep learning. Plants, 8, 468. PubMed PMC

Zhang C., Zhou L., Xiao Q.  et al. (2022) End-to-end fusion of hyperspectral and chlorophyll fluorescence imaging to identify rice stresses. Plant Phenomics, 2022, 9851096. PubMed PMC

Sandhu K.S., Mihalyov P.D., Lewien M.J.  et al. (2021) Combining genomic and phenomic information for predicting grain protein content and grain yield in spring wheat. Front. Plant Sci., 12, 613300. PubMed PMC

Araus J.L., Kefauver S.C., Zaman-Allah M.  et al. (2018) Translating high-throughput phenotyping into genetic gain. Trends Plant Sci., 23, 451–466. PubMed PMC

Steinbach D., Alaux M., Amselem J.  et al. (2013) GnpIS: an information system to integrate genetic and genomic data from plants and fungi. Database, 2013, bat058. PubMed PMC

Pommier C., Michotey C., Cornut G.  et al. (2019) Applying FAIR Principles to Plant Phenotypic Data Management in GnpIS. Plant Phenomics, 2019, 1671403. PubMed PMC

Brookes A.J. and Robinson P.N. (2015) Human genotype-phenotype databases: aims, challenges and opportunities. Nat. Rev. Genet., 16, 702–715. PubMed

Cobo-Simón I. (2022) Cartograplant: cyberinfrastructure to improve forest health and productivity in the context of a changing climate. In Plant and Animal Genome XXIX Conference, San Diego (CA)

Sansone S.A., McQuilton P., Rocca-Serra P.  et al. (2019) FAIRsharing as a community approach to standards, repositories and policies. Nat. Biotechnol., 37, 358–367. PubMed PMC

Bulow L., Schindler M., Choi C.  et al. (2004) PathoPlant: a database on plant-pathogen interactions. Silico. Biol., 4, 529–536. PubMed

Bulow L., Schindler M. and Hehl R. (2007) PathoPlant: a platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Res., 35, D841–845. PubMed PMC

Wu W., Wu Y., Hu D.  et al. (2020) PncStress: a manually curated database of experimentally validated stress-responsive non-coding RNAs in plants. Database, 2020, baaa001. PubMed PMC

Global Burden Of Disease Cancer C., Fitzmaurice C., Abate D.  et al. (2019) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol., 5, 1749–1768. PubMed PMC

Dhondt S., Wuyts N. and Inze D. (2013) Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci., 18, 428–439. PubMed

Diaz B.P., Knowles B., Johns C.T.  et al. (2021) Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic. Nat. Commun., 12, 6634. PubMed PMC

Adak A., Murray S.C., Calderon C.I.  et al. (2023) Genetic mapping and prediction for novel lesion mimic in maize demonstrates quantitative effects from genetic background, environment and epistasis. Theor. Appl. Genet., 136, 155. PubMed

Hill D.P., D’Eustachio P., Berardini T.Z.  et al. (2016) Modeling biochemical pathways in the gene ontology. Database, 2016, baw126. PubMed PMC

Poux S. and Gaudet P. (2017) Best practices in manual annotation with the gene ontology. Methods Mol. Biol., 1446, 41–54. PubMed

Chibucos M.C. and Tyler B.M. (2009) Common themes in nutrient acquisition by plant symbiotic microbes, described by the Gene Ontology. BMC Microbiol., 9, S6. PubMed PMC

Fox S.E., Geniza M., Hanumappa M.  et al. (2014) De novo transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat Triticum monococcum. PLoS One, 9, e96855. PubMed PMC

Vining K.J., Romanel E., Jones R.C.  et al. (2015) The floral transcriptome of Eucalyptus grandis. New Phytol., 206, 1406–1422. PubMed

Fennell A.Y., Schlauch K.A., Gouthu S.  et al. (2015) Short day transcriptomic programming during induction of dormancy in grapevine. Front. Plant Sci., 6, 834. PubMed PMC

Gupta P., Geniza M., Naithani S.  et al. (2021) Chia (Salvia hispanica) gene expression atlas elucidates dynamic spatio-temporal changes associated with plant growth and development. Front. Plant Sci., 12, 667678. PubMed PMC

Godoy F., Kuhn N., Munoz M.  et al. (2021) The role of auxin during early berry development in grapevine as revealed by transcript profiling from pollination to fruit set. Hortic. Res., 8, 140. PubMed PMC

Perez-Riverol Y., Xu Q.W., Wang R.  et al. (2016) PRIDE Inspector Toolsuite: moving toward a universal visualization tool for proteomics data standard formats and quality assessment of ProteomeXchange datasets. Mol. Cell. Proteomics, 15, 305–317. PubMed PMC

Kosova K., Vitamvas P., Urban M.O.  et al. (2018) Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Front. Plant Sci., 9, 122. PubMed PMC

Jarnuczak A.F. and Vizcaino J.A. (2017) Using the PRIDE Database and ProteomeXchange for submitting and accessing public proteomics datasets. Curr. Protoc. Bioinfor., 59, 13 31 11–13 31 12. PubMed

Okuda S., Watanabe Y., Moriya Y.  et al. (2017) jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res., 45, D1107–D1111. PubMed PMC

Moriya Y., Kawano S., Okuda S.  et al. (2019) The jPOST environment: an integrated proteomics data repository and database. Nucleic Acids Res., 47, D1218–D1224. PubMed PMC

Chen T., Ma J., Liu Y.  et al. (2022) iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res., 50, D1522–D1527. PubMed PMC

Ma J., Chen T., Wu S.  et al. (2019) iProX: an integrated proteome resource. Nucleic Acids Res., 47, D1211–D1217. PubMed PMC

Sharma V., Eckels J., Taylor G.K.  et al. (2014) Panorama: a targeted proteomics knowledge base. J. Proteome. Res., 13, 4205–4210. PubMed PMC

Desiere F., Deutsch E.W., King N.L.  et al. (2006) The Peptide Atlas project. Nucleic Acids Res., 34, D655–658. PubMed PMC

Deutsch E.W. (2010) The PeptideAtlas Project. Methods Mol. Biol., 604, 285–296. PubMed PMC

Tsugawa H., Rai A., Saito K.  et al. (2021) Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat. Prod. Rep., 38, 1729–1759. PubMed

Members M.S.I.B., Sansone S.A., Fan T.  et al. (2007) The metabolomics standards initiative. Nat. Biotechnol., 25, 846–848. PubMed

Sumner L.W., Amberg A., Barrett D.  et al. (2007) Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3, 211–221. PubMed PMC

Vinaixa M., Schymanski E.L., Neumann S.  et al. (2016) Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. TrAC, 78, 23–35.

Salek R.M., Neumann S., Schober D.  et al. (2015) COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics, 11, 1587–1597. PubMed PMC

Steinbeck C., Conesa P., Haug K.  et al. (2012) MetaboLights: towards a new COSMOS of metabolomics data management. Metabolomics, 8, 757–760. PubMed PMC

Considine E.C. and Salek R.M. (2019) A tool to encourage minimum reporting guideline uptake for data analysis in metabolomics. Metabolites, 9: 43. PubMed PMC

Schorn M.A., Verhoeven S., Ridder L.  et al. (2021) A community resource for paired genomic and metabolomic data mining. Nat. Chem. Biol., 17, 363–368. PubMed PMC

Cooper L. and Jaiswal P. (2016) The Plant Ontology: a tool for plant genomics. Methods Mol. Biol., 1374, 89–114. PubMed

Cooper L., Walls R.L., Elser J.  et al. (2013) The plant ontology as a tool for comparative plant anatomy and genomic analyses. Plant Cell Physiol, 54, e1. PubMed PMC

Avraham S., Tung C.W., Ilic K.  et al. (2008) The Plant Ontology Database: a community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucleic Acids Res., 36, D449–454. PubMed PMC

Warman C., Sullivan C.M., Preece J.  et al. (2021) A cost-effective maize ear phenotyping platform enables rapid categorization and quantification of kernels. Plant J., 106, 566–579. PubMed

Oellrich A., Walls R.L., Cannon E.K.  et al. (2015) An ontology approach to comparative phenomics in plants. Plant Methods, 11, 10. PubMed PMC

Cooper L., Meier A., Laporte M.A.  et al. (2018) The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics. Nucleic Acids Res., 46, D1168–D1180. PubMed PMC

Tello-Ruiz M.K., Naithani S., Gupta P.  et al. (2021) Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res., 49, D1452–D1463. PubMed PMC

Naithani S. and Jaiswal P. (2017) Pathway analysis and omics data visualization using pathway genome databases: FragariaCyc, a case study. Methods Mol. Biol., 1533, 241–256. PubMed

Naithani S., Raja R., Waddell E.N.  et al. (2014) VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera). Front. Plant Sci., 5, 644. PubMed PMC

Gupta P., Naithani S., Preece J.  et al. (2022) Plant reactome and PubChem: the plant pathway and (Bio)Chemical Entity Knowledgebases. Methods Mol. Biol., 2443, 511–525. PubMed

Naithani S., Gupta P., Preece J.  et al. (2020) Plant Reactome: a knowledgebase and resource for comparative pathway analysis. Nucleic Acids Res., 48, D1093–D1103. PubMed PMC

Jaiswal P. and Usadel B. (2016) Plant Pathway Databases. Methods Mol. Biol., 1374, 71–87. PubMed

Kattge J., Ogle K., Bönisch G.  et al. (2011) A generic structure for plant trait databases. Meth. Ecol. Evolut., 2, 202–213.

van Kleunen M., Pysek P., Dawson W.  et al. (2019) The Global Naturalized Alien Flora (GloNAF) database. Ecology, 100, e02542. PubMed

Manolio T.A., Collins F.S., Cox N.J.  et al. (2009) Finding the missing heritability of complex diseases. Nature, 461, 747–753. PubMed PMC

Visscher P.M., Brown M.A., McCarthy M.I.  et al. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24. PubMed PMC

Visscher P.M., Wray N.R., Zhang Q.  et al. (2017) 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet., 101, 5–22. PubMed PMC

Uffelmann E., Huang Q.Q., Munung N.S.  et al. (2021) Genome-wide association studies. Nat. Rev. Methods Primers, 1, 1–21.

Falconer D.S. and Mackay T.F.C. (1996) Introduction to Quantitative Genetics. Longmans Green, Harlow, Essex, UK.

Kearsey M.J. (1998) The principles of QTL analysis (a minimal mathematics approach). J. Exp. Bot., 49, 1619–1623.

Lynch M. and Walsh B.V. (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.

Sallam A., Eltaher S., Alqudah A.M.  et al. (2022) Combined GWAS and QTL mapping revealed candidate genes and SNP network controlling recovery and tolerance traits associated with drought tolerance in seedling winter wheat. Genomics, 114, 110358. PubMed

Hayes B.J., Gjuvsland A. and Omholt S. (2006) Power of QTL mapping experiments in commercial Atlantic salmon populations, exploiting linkage and linkage disequilibrium and effect of limited recombination in males. Heredity, 97, 19–26. PubMed

Joiret M., Mahachie John J.M., Gusareva E.S.  et al. (2019) Confounding of linkage disequilibrium patterns in large scale DNA based gene-gene interaction studies. BioData Min., 12, 11. PubMed PMC

Hartl D.L., Clark A.G. and Clark A.G. (1997) Principles of Population Genetics. Sinauer Associates, Sunderland, MA.

Lee Y.H. (2015) Meta-analysis of genetic association studies. Ann. Lab. Med., 35, 283–287. PubMed PMC

Dehghan A. (2018) Genome-wide association studies. Methods Mol. Biol., 1793, 37–49. PubMed

Buniello A., MacArthur J.A.L., Cerezo M.  et al. (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res., 47, D1005–D1012. PubMed PMC

Togninalli M., Seren U., Freudenthal J.A.  et al. (2020) AraPheno and the AraGWAS Catalog 2020: a major database update including RNA-Seq and knockout mutation data for Arabidopsis thaliana. Nucleic Acids Res., 48, D1063–D1068. PubMed PMC

Zeggini E. and Ioannis J.P.A. (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics, 10, 191–201. PubMed PMC

Soriano J.M., Colasuonno P., Marcotuli I.  et al. (2021) Meta-QTL analysis and identification of candidate genes for quality, abiotic and biotic stress in durum wheat. Sci. Rep., 11, 11877. PubMed PMC

Kraft P., Zeggini E. and Ioannidis J.P. (2009) Replication in genome-wide association studies. Stat Sci., 24, 561–573. PubMed PMC

Li P., Zhang Y., Yin S.  et al. (2018) QTL-by-environment interaction in the response of maize root and shoot traits to different water regimes. Front. Plant Sci., 9, 229. PubMed PMC

Lowry D.B., Lovell J.T., Zhang L.  et al. (2019) QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proc. Natl. Acad. Sci., 116, 12933–12941. PubMed PMC

Pinu F.R., Beale D.J., Paten A.M.  et al. (2019) Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites, 9, 76. PubMed PMC

Pacheco A.R., Pauvert C., Kishore D.  et al. (2022) Toward FAIR Representations of Microbial Interactions. mSystems, 7, e0065922. PubMed PMC

Sumner L.W., Styczynski M., McLean J.  et al. (2015) Introducing the USA plant, algae and microbial metabolomics research coordination network (PAMM-NET). Metabolomics, 11, 3–5. PubMed PMC

Kodra D., Pousinis P., Vorkas P.A.  et al. (2022) Is current practice adhering to guidelines proposed for metabolite identification in LC-MS untargeted metabolomics? A meta-analysis of the literature. J. Proteome Res., 21, 590–598. PubMed

Schroeder M., Meyer S.W., Heyman H.M.  et al. (2019) Generation of a collision cross section library for multi-dimensional plant metabolomics using UHPLC-Trapped Ion Mobility-MS/MS. Metabolites, 10, 13. PubMed PMC

Wilkinson M.D., Dumontier M., Aalbersberg I.J.  et al. (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data, 3, 160018. PubMed PMC

Jeliazkova N., Apostolova M.D., Andreoli C.  et al. (2021) Towards FAIR nanosafety data. Nat. Nanotechnol., 16, 644–654. PubMed

Iturbide M., Fernandez J., Gutierrez J.M.  et al. (2022) Implementation of FAIR principles in the IPCC: the WGI AR6 Atlas repository. Sci. Data, 9, 629. PubMed PMC

Mons B., Neylon C., Velterop J.  et al. (2017) Cloudy, increasingly FAIR; revisiting the FAIR data guiding principles for the European open science cloud. Inform. Serv. Use, 37, 49–56.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace