Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome

. 2018 ; 9 () : 122. [epub] 20180208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29472941

HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.

Zobrazit více v PubMed

Abat J. K., Deswal R. (2009). Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9, 4368–4380. 10.1002/pmic.200800985 PubMed DOI

Agrawal G. K., Jwa N. S., Rakwal R. (2009). Rice proteomics: ending phase I and the beginning of phase II. Proteomics 9, 935–963. 10.1002/pmic.200800594 PubMed DOI

Ahmad P., Abdel Latef A. A. H., Rasool S., Akram N. A., Ashraf M., Gucel S. (2016). Role of proteomics in crop stress tolerance. Front. Plant Sci. 7:1336. 10.3389/fpls.2016.01336 PubMed DOI PMC

Ahsan N., Nanjo Y., Sawada H., Kohno Y., Komatsu S. (2010). Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics 10, 2605–2619. 10.1002/pmic.201000180 PubMed DOI

Ahsan N., Renaut J., Komatsu S. (2009). Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9, 2602–2621. 10.1002/pmic.200800935 PubMed DOI

Ali M. B., El-Sadek A. N. (2016). Evaluation of drought tolerance indices for wheat (Triticum aestivum L.) under irrigated and rainfed conditions. Commun. Biometry Crop Sci. 11, 77–89.

Alvarez S., Roy Choudhury S., Pandey S. (2014). Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J. Proteome Res. 13, 1688–1701. 10.1021/pr401165b PubMed DOI

Askari H., Edqvist J., Hajheidari M., Kafi M., Salekdeh G. H. (2006). Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6, 2542–2554. 10.1002/pmic.200500328 PubMed DOI

Bae M. S., Cho E. J., Choi E. Y., Park O. K. (2003). Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J. 36, 652–663. 10.1046/j.1365-313X.2003.01907.x PubMed DOI

Barkan A., Small I. (2014). Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415–442. 10.1146/annurev-arplant-050213-040159 PubMed DOI

Barkla B. J., Vera-Estrella R., Hernández-Coronado M., Pantoja O. (2009). Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. Plant Cell 21, 4044–4058. 10.1105/tpc.109.069211 PubMed DOI PMC

Benešová M., Holá D., Fischer L., Jedelský P. L., Hnilička F., Wilhelmová N., et al. . (2012). The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE 7:e38017. 10.1371/journal.pone.0038017 PubMed DOI PMC

Bernardo L., Morcia C., Carletti P., Ghizzoni R., Badeck F. W., Rizza F., et al. . (2017). Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. J. Proteomics 169, 21–32. 10.1016/j.jprot.2017.03.024 PubMed DOI

Bhushan D., Pandey A., Choudhary M. K., Datta A., Chakraborty S., Chakraborty N. (2007). Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol. Cell. Proteomics 6, 1868–1884. 10.1074/mcp.M700015-MCP200 PubMed DOI

Blum A. (2016). Stress, strain, signalling, and adaptation - not just a matter of definition. J. Exp. Bot. 67, 562–565. 10.1093/jxb/erv497 PubMed DOI

Brini F., Hanin M., Lumbreras V., Irar S., Pagès M., Masmoudi K. (2007). Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci. 172, 20–28. 10.1016/j.plantsci.2006.07.011 DOI

Budak H., Akpinar B. A., Unver T., Turktas M. (2013). Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol. Biol. 83, 89–103. 10.1007/s11103-013-0024-5 PubMed DOI

Bustos D. M., Bustamante C. A., Iglesias A. A. (2008). Involvement of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in response to oxidative stress. J. Plant Physiol. 165, 456–461. 10.1016/j.jplph.2007.06.005 PubMed DOI

Camejo D., Romero-Puertas M. D., Rodríguez-Serrano M., Sandalio L. M., Lázaro J. J., Jiménez A., et al. . (2013). Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J. Proteomics 79, 87–99. 10.1016/j.jprot.2012.12.003 PubMed DOI

Caruso G., Cavaliere C., Guarino C., Gubbiotti R., Foglia P., Laganà A. (2008). Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal. Bioanal. Chem. 391, 381–390. 10.1007/s00216-008-2008-x PubMed DOI

Chen W., Wang H., Tao S., Zheng Y., Wu W., Lian F., et al. . (2013). Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle 12, 2321–2328. 10.4161/cc.25404 PubMed DOI PMC

Cheng L., Wang Y., He Q., Li H., Zhang X., Zhang F. (2016). Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC Plant Biol. 16:188. 10.1186/s12870-016-0871-8 PubMed DOI PMC

Claeys H., Van Landeghem S., Dubois M., Maleux K., Inzé D. (2014). What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol. 165, 519–527. 10.1104/pp.113.234641 PubMed DOI PMC

Dietz K. J. (2016). Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol. Cells 39, 20–25. 10.14348/molcells.2016.2324 PubMed DOI PMC

Dornez E., Croes E., Gebruers K., Carpentier S., Swennen R., Laukens K., et al. (2010). 2-D DIGE reveals changes in wheat xylanase inhibitor protein families due to Fusarium graminearum Delta Tri5 infection and grain development. Proteomics 10, 2303–2319. 10.1002/pmic.200900493 PubMed DOI

Durand T. C., Sergeant K., Planchon S., Carpin S., Label P., Morabito D., et al. . (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): Leaf and cambial proteome changes induced by cadmium(2+). Proteomics 10, 349–368. 10.1002/pmic.200900484 PubMed DOI

Faghani E., Gharechahi J., Komatsu S., Mirzaei M., Khavarinejad R. A., Najafi F., et al. . (2015). Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J. Proteomics 114, 1–15. 10.1016/j.jprot.2014.10.018 PubMed DOI

Flowers T. J., Colmer T. D. (2008). Salinity tolerance in halophytes. New Phytol. 179, 945–963. 10.1111/j.1469-8137.2008.02531.x PubMed DOI

Flowers T. J., Colmer T. D. (2015). Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115, 327–331. 10.1093/aob/mcu267 PubMed DOI PMC

Ford K. L., Cassin A., Bacic A. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front. Plant Sci. 2:44. 10.3389/fpls.2011.00044 PubMed DOI PMC

Ge P., Ma C., Wang S., Gao L., Li X., Guo G., et al. . (2012). Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal. Bioanal. Chem. 402, 1297–1313. 10.1007/s00216-011-5532-z PubMed DOI

Ghabooli M., Khatabi B., Ahmadi F. S., Sepehri M., Mirzaei M., Amirkhani A., et al. . (2013). Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteomics 94, 289–301. 10.1016/j.jprot.2013.09.017 PubMed DOI

Ghaffari M., Toorchi M., Valizadeh M., Komatsu S. (2013). Differential response of root proteome to drought stress in drought sensitive and tolerant sunflower inbred lines. Funct. Plant Biol. 40, 609–617. 10.1071/FP12251 PubMed DOI

Gharechahi J., Alizadeh H., Naghavi M. R., Sharifi G. (2014). A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol. Biol. Rep. 41, 3897–3905. 10.1007/s11033-014-3257-8 PubMed DOI

Ghatak A., Chaturvedi P., Paul P., Agrawal G. K., Rakwal R., Kim S. T., et al. . (2017). Proteomics survey of Solanaceae family: current status and challenges ahead. J. Proteomics 169, 41–57. 10.1016/j.prot.2017.05 PubMed DOI

Ghosh D., Xu J. (2014). Abiotic stress responses in plant roots: a proteomics perspective. Front. Plant Sci. 5:6. 10.3389/fpls.2014.00006 PubMed DOI PMC

Goulas E., Schubert M., Kieselbach T., Kleczkowski L. A., Gardeström P., Schröder W., et al. . (2006). The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J. 47, 720–734. 10.1111/j.1365-313X.2006.02821.x PubMed DOI

Guo G., Ge P., Ma C., Li X., Lv D., Wang S., et al. . (2012). Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J. Proteomics 75, 1867–1885. 10.1016/j.jprot.2011.12.032 PubMed DOI

Hajheidari M., Eivazi A., Buchanan B. B., Wong J. H., Majidi I., Salekdeh G. H. (2007). Proteomics uncovers a role for redox in drought tolerance in wheat. J. Proteome Res. 6, 1451–1460. 10.1021/pr060570j PubMed DOI

Holá D., Benešová M., Fischer L., Haisel D., Hnilička F., Hniličková H., et al. . (2017). The disadvantages of being a hybrid during drought: a combined analysis of plant morphology, physiology and leaf proteome in maize. PLoS ONE 12:e0176121. 10.1371/journal.pone.0176121 PubMed DOI PMC

Hossain Z., Komatsu S. (2013). Contribution of proteomic studies towards understanding plant heavy metal stress response. Front. Plant Sci. 3:310. 10.3389/fpls.2012.00310 PubMed DOI PMC

Hossain Z., Nouri M. Z., Komatsu S. (2012). Plant cell organelle proteomics in response to abiotic stress. J. Proteome Res. 11, 37–48. 10.1021/pr200863r PubMed DOI

Hüner N. P., Bode R., Dahal K., Hollis L., Rosso D., Krol M., et al. (2012). Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited. Front. Plant Sci. 3:255 10.3389/fpls.2012.00255 PubMed DOI PMC

Hynek R., Svensson B., Jensen O. N., Barkholt V., Finnie C. (2009). The plasma membrane proteome of germinating barley embryos. Proteomics 9, 3787–3794. 10.1002/pmic.200800745 PubMed DOI

Jacoby R. P., Millar A. H., Taylor N. L. (2010). Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J. Proteome Res. 9, 6595–6604. 10.1021/pr1007834 PubMed DOI

Jacoby R. P., Millar A. H., Taylor N. L. (2013). Investigating the role of respiration in plant salinity tolerance by analyzing mitochondrial proteomes from wheat and a salinity-tolerant amphiploid (wheat x Lophopyrum elongatum). J. Proteome Res. 12, 4807–4829. 10.1021/pr400504a PubMed DOI

Janmohammadi M., Zolla L., Rinalducci S. (2015). Low temperature tolerance in plants: changes at the protein level. Phytochemistry 117, 76–89. 10.1016/j.phytochem.2015.06.003 PubMed DOI

Janská A., Aprile A., Zámečník J., Cattivelli L., Ovesná J. (2011). Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct. Integr. Genomics 11, 307–325. 10.1007/s10142-011-0213-8 PubMed DOI PMC

Johnová P., Skalák J., Saiz-Fernández I., Brzobohatý B. (2016). Plant responses to ambient temperature fluctuations and water-limiting conditions: a proteome-wide perspective. Biochim. Biophys. Acta Proteins Proteomics 1864, 916–931. 10.1016/j.bbapap.2016.02.007 PubMed DOI

Jorrín-Novo J. V., Maldonado A. M., Echevarría-Zomeno S., Valledor L., Castillejo M. A., Curto M., et al. (2009). Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experiemntal design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage, and expand biological knowledge. J. Proteomics 72, 285–314. 10.1016/j.jprot.2009.01.026 PubMed DOI

Kamal A. H., Cho K., Kim D. E., Uozumi N., Chung K. Y., Lee S. Y., et al. . (2012). Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol. Biol. Rep. 39, 9059–9074. 10.1007/s11033-012-1777-7 PubMed DOI

Kausar R., Arshad M., Shahzad A., Komatsu S. (2013). Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids 44, 345–359. 10.1007/s00726-012-1338-3 PubMed DOI

Khanna-Chopra R., Jajoo A., Semwal V. K. (2011). Chloroplasts and mitochondria have multiple heat tolerant isozymes of SOD and APX in leaf and inflorescence in Chenopodium album. Biochem. Biophys. Res. Commun. 412, 522–525. 10.1016/j.bbrc.2011.06.179 PubMed DOI

Komatsu S., Kamal A. H., Hossain Z. (2014). Wheat proteomics: proteome modulation and abiotic stress acclimation. Front. Plant Sci. 5:684. 10.3389/fpls.2014.00684 PubMed DOI PMC

Komatsu S., Kobayashi Y., Nishizawa K., Nanjo Y., Furukawa K. (2010). Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39, 1435–1449. 10.1007/s00726-010-0608-1 PubMed DOI

Komatsu S., Kuji R., Nanjo Y., Hiraga S., Furukawa K. (2012). Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques. J. Proteomics 77, 531–560. 10.1016/j.jprot.2012.09.032 PubMed DOI

Komatsu S., Wada T., Abaléa Y., Nouri M. Z., Nanjo Y., Nakayama N., et al. . (2009). Analysis of plasma membrane proteome in soybean and application to flooding stress response. J. Proteome Res. 8, 4487–4499. 10.1021/pr9002883 PubMed DOI

Komatsu S., Yamamoto A., Nakamura T., Nouri M. Z., Nanjo Y., Nishizawa K., et al. . (2011). Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J. Proteome Res. 10, 3993–4004. 10.1021/pr2001918 PubMed DOI

König J., Muthuramalingam M., Dietz K. J. (2012). Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Curr. Opin. Plant Biol. 15, 261–268. 10.1016/j.pbi.2011.12.002 PubMed DOI

Kosmala A., Bocian A., Rapacz M., Jurczyk B., Zwierzykowski Z. (2009). Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J. Exp. Bot. 60, 3595–3609. 10.1093/jxb/erp205 PubMed DOI

Kosmala A., Perlikowski D., Pawłowicz I., Rapacz M. (2012). Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. J. Exp. Bot. 63, 6161–6172. 10.1093/jxb/ers265 PubMed DOI

Kosová K., Prášil I. T., Vítámvás P. (2008). The relationship between vernalization-and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biol. Plant. 52, 601–615. 10.1007/s10535-008-0120-6 DOI

Kosová K., Prášil I. T., Vítámvás P. (2013b). Protein contribution to plant salinity response and tolerance acquisition. Int. J. Mol. Sci. 14, 6757–6789. 10.3390/ijms14046757 PubMed DOI PMC

Kosová K., Vítámvás P., Planchon S., Renaut J., Vanková R., Prášil I. T. (2013d). Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J. Proteome Res. 12, 4830–4845. 10.1021/pr400600g PubMed DOI

Kosová K., Vítámvás P., Prášil I. T. (2014). Proteomics of stress responses in wheat and barley-search for potential protein markers of stress tolerance. Front. Plant Sci. 5:711. 10.3389/fpls.2014.00711 PubMed DOI PMC

Kosová K., Vítámvás P., Prášil I. T., Renaut J. (2011). Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response. J. Proteomics 74, 1301–1322. 10.1016/j.jprot.2011.02.006 PubMed DOI

Kosová K., Vítámvás P., Prášilová P., Prášil I. T. (2013c). Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. Biol. Plant. 57, 105–112. 10.1007/s10535-012-0237-5 DOI

Kosová K., Vítámvás P., Urban M. O., Klíma M., Roy A., Prášil I. T. (2015). Biological networks underlying abiotic stress tolerance in temperate crops - a proteomic perspective. Int. J. Mol. Sci. 16, 20913–20942. 10.3390/ijms160920913 PubMed DOI PMC

Kosová K., Vítámvás P., Urban M. O., Prášil I. T. (2013a). Plant proteome responses to salinity stress - comparison of glycophytes and halophytes. Funct. Plant Biol. 40, 775–786. 10.1071/FP12375 PubMed DOI

Kwak K. J., Kim Y. O., Kang H. S. (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56, 3007–3016. 10.1093/jxb/eri298 PubMed DOI

Lawlor D. W. (2013). Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J. Exp. Bot. 64, 83–108. 10.1093/jxb/ers326 PubMed DOI

Lee H., Guo Y., Ohta M., Xiong L. M., Stevenson B., Zhu J. K. (2002). LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J. 21, 2692–2702. 10.1093/emboj/21.11.2692 PubMed DOI PMC

Levi A., Panta G. R., Parmentier C. M., Muthalif M. M., Arora R., Shanker S., et al. (1999). Complementary DNA cloning, sequencing and expression of an unusual dehydrin from blueberry floral buds. Physiol. Plant. 107, 98–109.

Levitt J. (1980). Responses of Plants to Environmental Stresses: Chilling, Freezing and High Temperature Stresses. New York, NY: Academic Publisher.

Li G., Zhang Z. S., Gao H. Y., Liu P., Dong S. T., Zhang J. W., et al. (2012). Effects of nitrogen on photosynthetic characteristics of leaves from two different stay-green corn (Zea mays L.) varieties at the grain-filling stage. Can. J. Plant Sci. 92, 671–680. 10.4141/CJPS2012-039 DOI

Li X., Cai J., Liu F., Dai T., Cao W., Jiang D. (2014). Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Funct. Plant Biol. 41, 690–703. 10.1071/FP13306 PubMed DOI

Majoul T., Bancel E., Triboï E., Ben Hamida J., Branlard G. (2004). Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4, 505–513. 10.1002/pmic.200300570 PubMed DOI

Manaa A., Ben Ahmed H., Valot B., Bouchet J.-P., Aschi-Smiti S., Causse M., et al. . (2011). Salt and genotype impact on plant physiology and root proteome variations in tomato. J. Exp. Bot. 62, 2797–2813. 10.1093/jxb/erq460 PubMed DOI

Maršálová L., Vítámvás P., Hynek R., Prášil I. T., Kosová K. (2016). Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: similarities and differences between a glycophyte and a halophyte. Front. Plant Sci. 7:1154. 10.3389/fpls.2016.01154 PubMed DOI PMC

Meyer Y., Reichheld J. P., Vignols F. (2005). Thioredoxins in Arabidopsis and other plants. Photosyn. Res. 86, 419–433. 10.1007/s11120-005-5220-y PubMed DOI

Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19. 10.1016/j.tplants.2005.11.002 PubMed DOI

Mock H. P., Dietz K. J. (2016). Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim. Biophys. Acta Proteins Proteomics 1864, 967–973. 10.1016/j.bbapap.2016.01.005 PubMed DOI

Mostek A., Börner A., Badowiec A., Weidner S. (2015). Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. J. Plant Physiol. 174, 166–176. 10.1016/j.jplph.2014.08.020 PubMed DOI

Munns R. (2002). Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239–250. 10.1046/j.0016-8025.2001.00808.x PubMed DOI

Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. 10.1146/annurev.arplant.59.032607.092911 PubMed DOI

Murata N., Los D. A. (1997). Membrane fluidity and temperature perception. Plant Physiol. 115, 875–879. 10.1104/pp.115.3.875 PubMed DOI PMC

Ning F., Wang W. (2016). The response of chloroplast proteome to abiotic stress, in Drought Stress Tolerance in Plants, eds Hossain M. A., Wani S. H., Bhattacharjee S., Burritt D.J., Tran L. S. P. (Verlag: Springer; ), 232–249.

Nouri M. Z., Komatsu S. (2010). Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Proteomics 10, 1930–1945. 10.1002/pmic.200900632 PubMed DOI

Oh M., Komatsu S. (2015). Characterization of proteins in soybean roots under flooding and drought stresses. J. Proteomics 114, 161–181. 10.1016/j.jprot.2014.11.008 PubMed DOI

Pandey A., Chakraborty S., Datta A., Chakraborty N. (2008). Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol. Cell. Proteomics 7, 88–107. 10.1074/mcp.M700314-MCP200 PubMed DOI

Pandey A., Rajamani U., Verma J., Subba P., Chakraborty N., Datta A., et al. . (2010). Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J. Proteome Res. 9, 3443–3464. 10.1021/pr901098p PubMed DOI

Pang Q., Chen S., Dai S., Chen Y., Wang Y., Yan X. (2010). Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J. Proteome Res. 9, 2584–2599. 10.1021/pr100034f PubMed DOI

Passioura J. B. (2006). The perils of pot experiments. Funct. Plant Biol. 33, 1075–1079. 10.1071/FP06223 PubMed DOI

Passioura J. B. (2012). Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct. Plant Biol. 39, 851–859. 10.1071/FP12079 PubMed DOI

Pechanova O., Takác T., Samaj J., Pechan T. (2013). Maize proteomics: an insight into the biology of an important cereal crop. Proteomics 13, 637–662. 10.1002/pmic.201200275 PubMed DOI

Peng Z., Wang M., Li F., Lv H., Li C., Xia G. (2009). A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol. Cell. Proteomics 8, 2676–2686. 10.1074/mcp.M900052-MCP200 PubMed DOI PMC

Perlikowski D., Kosmala A., Rapacz M., Kościelniak J., Pawłowicz I., Zwierzykowski Z. (2014). Influence of short-term drought conditions and subsequent re-watering on the physiology and proteome of Lolium multiflorum/Festuca arundinacea introgression forms, with contrasting levels of tolerance to long-term drought. Plant Biol. 16, 385–394. 10.1111/plb.12074 PubMed DOI

Perlikowski D., Wiśniewska H., Kaczmarek J., Góral T., Ochodzki P., Kwiatek M., et al. . (2016). Alterations in kernel proteome after infection with Fusarium culmorum in two triticale cultivars with contrasting resistance to Fusarium head blight. Front. Plant Sci. 7:1217. 10.3389/fpls.2016.01217 PubMed DOI PMC

Poorter H., Buhler J., van Dusschoten D., Climent J., Postma J. A. (2012a). Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 39, 839–850. 10.1071/FP12049 PubMed DOI

Poorter H., Fiorani F., Stitt M., Schurr U., Finck A., Gibon Y., et al. (2012b). The art of growing plants for experimental purposes: a practical guide for the plant biologist Review. Funct. Plant Biol. 39, 821–838. 10.1071/FP12028 PubMed DOI

Rampitsch C., Bykova N. V. (2012a). Proteomics and plant disease: advances in combating a major threat to the global food supply. Proteomics 12, 673–690. 10.1002/pmic.201100359 PubMed DOI

Rampitsch C., Bykova N. V. (2012b). The beginnings of crop phosphoproteomics: exploring early warning systems of stress. Front. Plant Sci. 3:144. 10.3389/fpls.2012.00144 PubMed DOI PMC

Rasoulnia A., Bihamta M. R., Peyghambari S. A., Alizadeh H., Rahnama A. (2011). Proteomic response of barley leaves to salinity. Mol. Biol. Rep. 38, 5055–5063. 10.1007/s11033-010-0651-8 PubMed DOI

Riccardi F., Gazeau P., Jacquemot M. P., Vincent D., Zivy M. (2004). Deciphering genetic variations of proteome responses to water deficit in maize leaves. Plant Physiol. Biochem. 42, 1003–1011. 10.1016/j.plaphy.2004.09.009 PubMed DOI

Rinalducci S., Egidi M. G., Karimzadeh G., Jazii F. R., Zolla L. (2011a). Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32, 1807–1818. 10.1002/elps.201000663 PubMed DOI

Rinalducci S., Egidi M. G., Mahfoozi S., Godehkahriz S. J., Zolla L. (2011b). The influence of temperature on plant development in a vernalization-requiring winter wheat: a 2-DE based proteomic investigation. J. Proteomics 74, 643–659. 10.1016/j.jprot.2011.02.005 PubMed DOI

Rinalducci S., Murgiano L., Zolla L. (2008). Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J. Exp. Bot. 59, 3781–3801. 10.1093/jxb/ern252 PubMed DOI

Rollins J. A., Habte E., Templer S. E., Colby T., Schmidt J., von Korff M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J. Exp. Bot. 64, 3201–3212. 10.1093/jxb/ert158 PubMed DOI PMC

Romero-Puertas M. C., Rodríguez-Serrano M., Sandalio L. M. (2013). Protein S-nitrosylation in plants under abiotic stress: an overview. Front. Plant Sci. 4:373. 10.3389/fpls.2013.00373 PubMed DOI PMC

Ronai Z., Robinson R., Rutberg S., Lazarus P., Sardana M. (1992). Aldolase-DNA interactions in a SEWA cell system. Biochim. Biophys. Acta 1130, 20–28. 10.1016/0167-4781(92)90456-A PubMed DOI

Rorat T. (2006). Plant dehydrins - tissue location, structure and function. Cell. Mol. Biol. Letters 11, 536–556. 10.2478/s11658-006-0044-0 PubMed DOI PMC

Salekdeh G. H., Komatsu S. (2007). Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7, 2976–2996. 10.1002/pmic.200700181 PubMed DOI

Sergeant K., Renaut J. (2010). Plant biotic stress and proteomics. Curr. Proteomics 7, 275–297. 10.2174/157016410793611765 DOI

Singh R., Green M. R. (1993). Sequence-specific binding of transfer-RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259, 365–368. 10.1126/science.8420004 PubMed DOI

Skylas D. J., Cordwell S. J., Hains P. G., Larsen M. R., Basseal D. J., Walsh B. J., et al. (2002). Heat shock of wheat during grain filling: proteins associated with heat-tolerance. J. Cereal Sci. 35, 175–188. 10.1006/jcrs.2001.0410 DOI

Subba P., Kumar R., Gayali S., Shekhar S., Parveen S., Pandey A., et al. . (2013). Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 13, 1973–1992. 10.1002/pmic.201200380 PubMed DOI

Sugimoto M., Takeda K. (2009). Proteomic Analysis of specific proteins in the root of salt-tolerant barley. Biosci. Biotechnol. Biochem. 73, 2762–2765. 10.1271/bbb.90456 PubMed DOI

Sung S., Amasino R. M. (2005). Remembering winter: toward a molecular understanding of vernalization. Annu. Rev. Plant Biol. 56, 491–508. 10.1146/annurev.arplant.56.032604.144307 PubMed DOI

Suzuki I., Los D. A., Kanesaki Y., Mikami K., Murata N. (2000). The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 19, 1327–1334. 10.1093/emboj/19.6.1327 PubMed DOI PMC

Suzuki N., Rivero R. M., Shulaev V., Blumwald E., Mittler R. (2014). Abiotic and biotic stress combinations. New Phytol. 203, 32–43. 10.1111/nph.12797 PubMed DOI

Tamburino R., Vitale M., Ruggiero A., Sassi M., Sannino L., Arena S., et al. . (2017). Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biol. 17:40. 10.1186/s12870-017-0971-0 PubMed DOI PMC

Tan B. C., Lim Y. S., Lau S. E. (2017). Proteomics in commercial crops: an overview. J. Proteomics 169, 176–188. 10.1016/j.jprot.2017.05.018 PubMed DOI

Tardieu F. (2012). Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J. Exp. Bot. 63, 25–31. 10.1093/jxb/err269 PubMed DOI

Tardieu F., Granier C., Muller B. (2011). Water deficit and growth. Co-ordinating processes without an orchestrator? Curr. Opin. Plant Biol. 14, 283–289. 10.1016/j.pbi.2011.02.002 PubMed DOI

Tardieu F., Tuberosa R. (2010). Dissection and modelling of abiotic stress tolerance in plants. Curr. Opin. Plant Biol. 13, 206–212. 10.1016/j.pbi.2009.12.012 PubMed DOI

Tardif G., Kane N. A., Adam H., Labrie L., Major G., Gulick P., et al. . (2007). Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol. Biol. 63, 703–718. 10.1007/s11103-006-9119-6 PubMed DOI

Taylor N. L., Heazlewood J. L., Day D. A., Millar A. H. (2005). Differential impact of environmental stresses on the pea mitochondrial proteome. Mol. Cell. Proteomics 4, 1122–1133. 10.1074/mcp.M400210-MCP200 PubMed DOI

Thompson J. E., Hopkins M. T., Taylor C., Wang T. W. (2004). Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci. 9, 174–179. 10.1016/j.tplants.2004.02.008 PubMed DOI

Urban M. O., Vašek J., Klíma M., Krtková J., Kosová K., Prášil I. T., et al. . (2017). Proteomic and physiological approach reveals drought-induced changes in rapeseeds: water-saver and water-spender strategy. J. Proteomics 152, 188–205. 10.1016/j.jprot.2016.11.004 PubMed DOI

Vadez V. (2014). Root hydraulics: the forgotten side of roots in drought adaptation. Field Crops Res. 165, 15–24. 10.1016/j.fcr.2014.03.017 DOI

Vadez V., Kholova J., Medina S., Kakkera A., Anderberg H. (2014). Transpiration efficiency: new insights into an old story. J. Exp. Bot. 65, 6141–6153. 10.1093/jxb/eru040 PubMed DOI

Vadez V., Kholová J., Zaman-Allah M., Belko N. (2013). Water: the most important 'molecular' component of water stress tolerance research. Funct. Plant Biol. 40, 1310–1322. 10.1071/FP13149 PubMed DOI

Vincent D., Ergül A., Bohlman M. C., Tattersall E. A. R., Tillett R. L., Wheatley M. D., et al. . (2007). Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J. Exp. Bot. 58, 1873–1892. 10.1093/jxb/erm012 PubMed DOI

Vincent D., Lapierre C., Pollet B., Cornic G., Negroni L., Zivy M. (2005). Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol. 137, 949–960. 10.1104/pp.104.050815 PubMed DOI PMC

Vítámvás P., Kosová K., Prášilová P., Prášil I. T. (2010). Accumulation of WCS120 protein in wheat cultivars grown at 9 degrees C or 17 degrees C in relation to their winter survival. Plant Breed. 129, 611–616. 10.1111/j.1439-0523.2010.01783.x PubMed DOI

Vítámvás P., Prášil I. T., Kosová K., Planchon S., Renaut J. (2012). Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics 12, 68–85. 10.1002/pmic.201000779 PubMed DOI

Vítámvás P., Urban M. O., Škodáček Z., Kosová K., Pitelková I., Vítámvás J., et al. . (2015). Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. Front. Plant Sci. 6:479. 10.3389/fpls.2015.00479 PubMed DOI PMC

Wang C., Zhang D. W., Wang Y. C., Zheng L., Yang C. P. (2012). A glycine-rich RNA-binding protein can mediate physiological responses in transgenic plants under salt stress. Mol. Biol. Rep. 39, 1047–1053. 10.1007/s11033-011-0830-2 PubMed DOI

Wang M. C., Peng Z. Y., Li C. L., Li F., Liu C., Xia G. M. (2008). Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8, 1470–1489. 10.1002/pmic.200700569 PubMed DOI

Wang X., Komatsu S. (2016). Plant subcellular proteomics: application for exploring optimal cell function in soybean. J. Proteomics 143, 45–56. 10.1016/j.jprot.2016.01.011 PubMed DOI

Wang X., Oh M. W., Komatsu S. (2016). Characterization of S-adenosylmethionine synthetases in soybean under flooding and drought stresses. Biol. Plant. 60, 269–278. 10.1007/s10535-016-0586-6 DOI

Wendelboe-Nelson C., Morris P. C. (2012). Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties. Proteomics 12, 3374–3385. 10.1002/pmic.201200154 PubMed DOI

Witzel K., Matros A., Strickert M., Kaspar S., Peukert M., Mühling K. H., et al. . (2014). Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins. Mol. Plant 7, 336–355. 10.1093/mp/sst063 PubMed DOI

Witzel K., Weidner A., Surabhi G. K., Börner A., Mock H. P. (2009). Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J. Exp. Bot. 60, 3545–3557. 10.1093/jxb/erp198 PubMed DOI PMC

Wu X., Gong F., Cao D., Hu X., Wang W. (2016). Advances in crop proteomics: PTMs of proteins under abiotic stress. Proteomics 16, 847–865. 10.1002/pmic.201500301 PubMed DOI

Xu J., Li Y., Sun J., Du L., Zhang Y., Yu Q., et al. . (2013). Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Plant Biol. 15, 292–303. 10.1111/j.1438-8677.2012.00639.x PubMed DOI

Yakubov B., Barazani O., Shachack A., Rowland L. J., Shoseyov O., Golan-Goldhirsh A. (2005). Cloning and expression of a dehydrin-like protein from Pistacia vera L. Trees 19, 224–230. 10.1007/s00468-004-0385-0 DOI

Yang F., Jacobsen S., Jørgensen H. J. L., Collinge D. B., Svensson B., Finnie C. (2013a). Fusarium graminearum and its interactions with cereal heads: studies in the proteomics era. Front. Plant Sci. 4:37. 10.3389/fpls.2013.00037 PubMed DOI PMC

Yang F., Melo-Braga M. N., Larsen M. R., Jørgensen H. J. L., Palmisano G. (2013b). Battle through signalling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics. Mol. Cell. Proteomics 12, 2497–2508. 10.1074/mcp.M113.027532 PubMed DOI PMC

Yang Q., Wang Y., Zhang J., Shi W., Qian C., Peng X. (2007). Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7, 737–749. 10.1002/pmic.200600703 PubMed DOI

Yin X., Komatsu S. (2015). Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress. J. Proteomics 119, 183–195. 10.1016/j.jprot.2015.02.004 PubMed DOI

Yin X., Komatsu S. (2016). Nuclear proteomics reveals the role of protein synthesis and chromatin structure in root tip of soybean during the initial stage of flooding stress. J. Proteome Res. 15, 2283–2298. 10.1021/acs.jproteome.6b00330 PubMed DOI

Yin X., Komatsu S. (2017). Comprehensive analysis of response and tolerant mechanisms in early stage soybean at initial-flooding stress. J. Proteomics 169, 225–232. 10.1016/j.jprot.2017.01.014 PubMed DOI

Zargar S. M., Mahajan R., Nazir M., Nagar P., Kim S. T., Rai V., et al. . (2017). Common bean proteomics: Present status and future strategies. J. Proteomics 169, 239–248. 10.1016/j.jprot.2017.03.019 PubMed DOI

Zhang H., Han B., Wang T., Chen S., Li H., Zhang Y., et al. . (2012). Mechanisms of plant salt response: Insights from proteomics. J. Proteome Res. 11, 49–67. 10.1021/pr200861w PubMed DOI

Zhang M., Li G., Huang W., Bi T., Chen G., Tang Z., et al. . (2010). Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics 10, 3117–3129. 10.1002/pmic.200900637 PubMed DOI

Zhang M., Lv D., Ge P., Bian Y., Chen G., Zhu G., et al. . (2014). Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J. Proteomics 109, 290–308. 10.1016/j.jprot.2014.07.010 PubMed DOI

Zhou W., Eudes F., Laroche A. (2006). Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6, 4599–4609. 10.1002/pmic.200600052 PubMed DOI

Zhu J., Alvarez S., Marsh E. L., LeNoble M. E., Cho I.-J., Sivaguru M., et al. . (2007). Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol. 145, 1533–1548. 10.1104/pp.107.107250 PubMed DOI PMC

Zhu J. K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273. 10.1146/annurev.arplant.53.091401.143329 PubMed DOI PMC

Zörb C., Herbst R., Forreiter C., Schubert S. (2009). Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9, 4209–4220. 10.1002/pmic.200800791 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...