Proteomic responses of two spring wheat cultivars to the combined water deficit and aphid (Metopolophium dirhodum) treatments

. 2022 ; 13 () : 1005755. [epub] 20221114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36452089

In the field, plants usually have to face the combined effects of abiotic and biotic stresses. In our study, two spring wheat cultivars-Septima and Quintus-were subjected to three water regimes [70%, 50%, and 40% soil water capacity (SWC)], aphid (Metopolophium dirhodum) infestation, or the combination of both stresses, i.e., water deficit (50%, 40% SWC) and aphids. The study has a 2 × 3 × 2 factorial design with three biological replicates. In the present study, the results of proteomic analysis using 2D-DIGE followed by MALDI-TOF/TOF protein identification are presented. Water deficit but also aphid infestation led to alterations in 113 protein spots including proteins assigned to a variety of biological processes ranging from signaling via energy metabolism, redox regulation, and stress and defense responses to secondary metabolism indicating a long-term adaptation to adverse conditions. The absence of specific proteins involved in plant response to herbivorous insects indicates a loss of resistance to aphids in modern wheat cultivars during the breeding process and is in accordance with the "plant vigor hypothesis." Septima revealed enhanced tolerance with respect to Quintus as indicated by higher values of morphophysiological characteristics (fresh aboveground biomass, leaf length, osmotic potential per full water saturation) and relative abundance of proteins involved in mitochondrial respiration and ATP biosynthesis.

Zobrazit více v PubMed

Alvarez S., Choudhury S. R., Pandey S. (2014). Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J. Proteome Res. 13, 1688–1701. doi: 10.1021/pr401165b PubMed DOI

Antoni R., Rodriguez L., Gonzalez Guzman M., Pizzio Bianchi G. A., Rodriguez Egea P. L. (2011). News on ABA transport, protein degradation and ABFs/WRKYs in ABA signalling. Curr. Opin. Plant Biol. 14, 547–553. doi: 10.1016/j.pbi.2011.06.004 PubMed DOI

Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. doi: 10.1146/annurev.arplant.55.031903.141701 PubMed DOI

Bernier F., Berna A. (2001). Germins and germin-like proteins: Plant do-all proteins. but what do they do exactly? Plant Physiol. Biochem. 39, 545–554. doi: 10.1016/S0981-9428(01)01285-2 DOI

Bhatt I., Tripathi B. N. (2011). Plant peroxiredoxins: Catalytic mechanism, functional significance and future perspectives. Biotechnol. Adv. 29, 850–859. doi: 10.1016/j.biotechadv.2011.07.002 PubMed DOI

Caraux G., Pinloche S. (2005). Permutmatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21 (7), 1280–1281. doi: 10.1093/bioinformatics/bti141 PubMed DOI

Caruso G., Cavaliere C., Foglia P., Gubiotti R., Samperi R., Lagana A. (2009). Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci. 177, 570–576. doi: 10.1016/j.plantsci.2009.08.007 DOI

Chaves M. M., Maroco J. P., Pereira J. S. (2003). Understanding plant responses to drought – from genes to the whole plant. Funct. Plant Biol. 30, 239–264. doi: 10.1071/FP02076 PubMed DOI

Cheng Q., Li N., Dong L., Zhang D., Fan S., Jiang L., et al. . (2015). Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Front. Plant Sci. 6 1024. doi: 10.3389/fpls.2015.01024 PubMed DOI PMC

Diaz-Vivancos P., De Simone A., Kiddle G., Foyer C. H. (2015). Glutathione – linking cell proliferation to oxidative stress. Free Radic. Biol. Med. 89, 1154–1164. doi: 10.1016/j.freeradbiomed.2015.09.023 PubMed DOI

Dietz K. J., Jacob S., Oelze M. L., Laxa M., Tognetti V., Marina S., et al. . (2006). The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 57 (8), 1697–1709. doi: 10.1093/jxb/erj.160 PubMed DOI

Ferry N., Stavroulakis S., Guan W., Davison G. M., Bell H. A., Weaver R. J., et al. . (2011). Molecular interactions between wheat and cereal aphid (Sitobion avenae): Analysis of changes to the wheat proteome. Proteomics 11, 1985–2002. doi: 10.1002/pmic.200900801 PubMed DOI

Ford K. L., Cassin A., Bacic A. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front. Plant Sci. 2. doi: 10.3389/fpls.2011.00044 PubMed DOI PMC

Hajheidari M., Eivazi A., Buchanan B. B., Wong J. H., Majidi I., Salekdeh G. H. (2007). Proteomics uncovers a role for redox in drought tolerance in wheat. J. Proteome Res. 6, 1451–1460. doi: 10.1021/pr060570j PubMed DOI

Henty-Ridilla J. L., Li J., Day B., Staiger C. J. (2014). ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in arabidopsis. Plant Cell 26, 340–352. doi: 10.1105/tpc.113/122499 PubMed DOI PMC

Hlaváčková I., Vítámvás P., Šantrůček J., Kosová K., Zelenková S., Prášil I. T., et al. . (2013). Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare l.) cv. luxor. Int. J. Mol. Sci. 14 (4), 8000–8024. doi: 10.3390/ijms14048000 PubMed DOI PMC

Honěk A., Martinková Z., Saska P., Dixon A. F. G. (2018). Aphids (Homoptera: Aphididae) on winter wheat: predicting maximum abundance of Metopolophium dirhodum . J. Economic Entomol. 111, 1751–1759. doi: 10.1093/jee/toy157 PubMed DOI PMC

Kim S. T., Cho K. S., Kim S. G., Kang S. Y., Kang K. Y. (2003). A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol. Cells 16 (2), 224–231 PubMed

Kosová K., Chrpová J., Šantrůček J., Hynek R., Klíma M., Prášil I. T., et al. . (2021. a). The effect of Fusarium culmorum inoculation and deoxynovalenol application on proteome response in wheat cultivars sumai 3 and SW kadrilj. Biol. Plant 65, 221–236. doi: 10.32615/bp.2021.010 DOI

Kosová K., Chrpová J., Šantrůček J., Hynek R., Štěrbová L., Vítámvás P., et al. . (2017). The effect of Fusarium culmorum infection and deoxynoivalenol (DON) application on proteome response in barley cultivars chevron and pedant. J. Proteomics 169, 112–124. doi: 10.1016/j.jprot.2017.07.005 PubMed DOI

Kosová K., Vítámvás P., Planchon S., Renaut J., Vanková R., Prášil I. T. (2013). Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J. Proteome Res. 12, 4830–4845. doi: 10.1021/pr400600g PubMed DOI

Kosová K., Vítámvás P., Prášil I. T., Klíma M., Renaut J. (2021. b). Plant proteoforms under environmental stress: Functional proteins arising from a single gene. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.793113 PubMed DOI PMC

Kosová K., Vítámvás P., Urban M. O., Prášil I. T., Renaut J. (2018). Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00122 PubMed DOI PMC

Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 270, 680–685. doi: 10.1038/227680a0 PubMed DOI

Lannoo N., Van Damme E. J. M. (2014). Lectin domains at the frontiers of plant defense. Front. Plant Sci. 5. doi: 10.3389/fpls.2014.00397 PubMed DOI PMC

Le Roux M. S. L., Burger F. V., Vlok M., Kunert K. J., Cullis C. A., Botha A. M. (2020). Wheat line “RYNO3936” is associated with delayed water stress-induced leaf senescence and rapid water-deficit stress recovery. Front. Plant Sci. 11 1053. doi: 10.3389/fpls.2020.01053 PubMed DOI PMC

Le Roux M. S. L., Burger N. F., Vlok M., Kunert K. J., Cullis C. A., Botha A. M. (2021). EMS derived wheat mutant BIG8-1 (Triticum aestivum l.) – a new drought tolerant mutant wheat line. Int. J. Mol. Sci. 22 5314. doi: 10.3390/ijms22105314 PubMed DOI PMC

Maršálová L., Vítámvás P., Hynek R., Prášil I. T., Kosová K. (2016). Proteomic response of Hordeum vulgare cv. tadmor and Hordeum marinum to salinity stress: Similarities and differences between a glycophyte and a halophyte. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01154 PubMed DOI PMC

Marshall R. S., Vierstra R. D. (2019). Dynamic regulation of the 26S proteasome: From synthesis to degradation. Front. Mol. Biosci. 6. doi: 10.3389/fmolb.2019.00040 PubMed DOI PMC

Martínez-Seidel F., Suwanchaikasem P., Nie S., Leeming M. G., Pereira-Firmino A. A., Williamson N. A., et al. . (2021). Membrane-enriched proteomics link ribosome acumulation and proteome reprogramming with cold acclimation in barley root meristems. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.656683 PubMed DOI PMC

Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11 (1), 15–19. doi: 10.1016/j.tplants.2005.11.002 PubMed DOI

Mostek A., Börner A., Badowiec A., Weidner S. (2015). Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. J. Plant Physiol. 174, 166–176. doi: 10.1016/j.jplph.2014.08.020 PubMed DOI

Nguyen T. T. A., Michaud D., Cloutier C. (2007). Proteomic profiling of aphid Macrosiphum euphorbiae responses to host-plant-mediated stress induced by defoliation and water deficit. J. Insect Physiol. 53, 601–611. doi: 10.1016/j.jinsphys.2007.02.018 PubMed DOI

Noël L. D., Cagna G., Stuttmann J., Wirthmüller L., Betsuyaku S., Witte C. P., et al. . (2007). Interaction between SGT1 and cytosolic/nuclear HSC70 chaperone regulates arabidopsis immune responses. Plant Cell 19, 4061–4076. doi: 10.1105/tpc.107.051896 PubMed DOI PMC

Pilon M., Ravet K., Tapken W. (2011). The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim. Biophys. Acta 1807, 989–998. doi: 10.1016/j.bbabio.2010.11.002 PubMed DOI

Prasad R., Shivay Y. S. (2017). Oxalic Acid/Oxalates in plants: From self-defence to phytoremediation. Curr. Sci. 112 (08), 1665–1667. doi: 10.18520/cs/v112/i08/1665-1667 DOI

Rasmussen S., Barah P., Suarez-Rodriguez M. C., Bressendorff S., Friis P., Costantino P., et al. . (2013). Transcriptome responses to combinations of stresses in arabidopsis. Plant Physiol. 161, 1783–1794. doi: 10.1104/pp.112.210773 PubMed DOI PMC

Rawat N., Pumphrey M. O., Liu S., Zhang X., Tiwari V. K., Ando K., et al. . (2016). Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat. Genet. 48, 1576–1580. doi: 10.1038/ng.3706 PubMed DOI

R Core Team (2022). R: A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing; ). Available at: https://www.R-project.org/.

Saijo Y., Po-iian Loo E. P. (2020). Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 225, 87–104. doi: 10.1111/nph.15989 PubMed DOI

Sarhan F., Ouellet F., Vazquez-Tello A. (1997). The wheat wcs120 gene family. a useful model to understand the genetics of cold acclimation. Physiol. Plant 101, 439–445. doi: 10.1111/j.1399-3054.1997.tb01019.x DOI

Saska P., Skuhrovec J., Platková H., Kosová K., Tylová E., Tuan S. J., et al. . (2022). Response of the spring wheat-cereal aphid system to drought: support for the plant vigour hypothesis. J. Pest Sci. doi: 10.1007/s10240-022-01514-3 DOI

Saska P., Skuhrovec J., Tylová E., Platková H., Tuan S.-J., Hsu Y.-T., et al. . (2021). Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest Sci. 94 (2), 423–434. doi: 10.1007/s10340-020-01253-3 DOI

Shahidi-Noghabi S., Van Damme E. J. M., Smagghe G. (2008). Carbohydrate-binding aktivity of the type-2 ribosome-inactivating protein SNA-I from elderberry (Sambucus nigra) is a determining factor for its insecticidal activity. Phytochemistry 69, 2972–2978. doi: 10.1016/j.phytochem.2008.09.012 PubMed DOI

Stallmann J., Schweiger R., Pons C. A. A., Müller C. (2020). Wheat growth, applied water use efficiency and flag leaf metabolome under continuous and pulsed deficit irrigation. Sci. Rep. 10, 10112. doi: 10.1038/s41598-020-66812-1 PubMed DOI PMC

Stone S. (2014). The role of ubiquitin and 26S proteasome in plant abiotic stress signaling. Front. Plant Sci. 5. doi: 10.3389/fpls.2014.00135 PubMed DOI PMC

Suzuki N., Rivero R. M., Shulaev V., Blumwald E., Mittler R. (2014). Abiotic and biotic stress combinations. New Phytol. 203, 32–43. doi: 10.1111/nph.12797 PubMed DOI

van Emden H., Harrington R. (2017). Aphids as Crop Pests. 2nd edn. CABI, Wallingford, the United Kingdom.

Vítámvás P., Kosová K., Musilová J., Holková L., Mařík P., Smutná P., et al. . (2019). Relationship between dehydrin accumulation and winter survival in winter wheat and barley grown in the field. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00007 PubMed DOI PMC

Vítámvás P., Urban M. O., Škodáček Z., Kosová K., Pitelková I., Vítámvás J., et al. . (2015). Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00479 PubMed DOI PMC

Vu V. Q. (2011) Ggbiplot: A ggplot2 based biplot. Available at: http://github.com/vqv/ggbiplot.

Wang W., Vignani R., Scali M., Cresti M. (2006). A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. -. Electrophoresis 27 (13), 2782–2786. doi: 10.1002/elps.200500722 PubMed DOI

Wang X., Wei Y., Shi L., Ma X., Theg S. M. (2015). New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum l.). J. Exp. Bot. 66 (21), 6827–6834. doi: 10.1093/jxb/erv388 PubMed DOI PMC

Wen R., Rorres-Acosta J. A., Pastushok L., Lai X., Pelzer L., Wang H., et al. . (2008). Arabidopsis UEV1D promotes lysine-63-linked polyubiquitination and is involved in DNA damage response. Plant Cell 20, 213–227. doi: 10.1105/tpc.107.051862 PubMed DOI PMC

Yoo K. S., Ok S. H., Jeong B., Jung K. W., Cui M. H., Hyoung S., et al. . (2011). Single cystathionine b-synthase domain-containing proteins modulate development by regulating the thioredoxin system in arabidopsis. Plant Cell 23, 3577–3594. doi: 10.1105/tpc.111.089847 PubMed DOI PMC

Zhang H., Gao Z., Zheng X., Zhang Z. (2012). The role of G-proteins in plant immunity. Plant Signal. Behav. 7 (10), 1284–1288. doi: 10.4161/psb.21431 PubMed DOI PMC

Zhong C. L., Zhang C., Liu J. Z. (2019). Heterotrimeric G protein signaling in plant immunity. Darwin rev. J. Exp. Bot. 70 (4), 1109–1118. doi: 10.1093/jxb/ery426 PubMed DOI

Zogli P., Alvarez S., Naldrett M. J., Palmer N. A., Koch K. G., Pingault L., et al. . (2020). Greenbug (Schizaphis graminum) herbivory significantly impacts protein and phosphorylation abundance in switchgrass (Panicum virgatum). Sci. Rep. 10, 14842. doi: 10.1038/s41598-020-71828-8 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...