Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
26175745
PubMed Central
PMC4485253
DOI
10.3389/fpls.2015.00479
Knihovny.cz E-resources
- Keywords
- Hordeum vulgare, crown, drought, phenotyping candidate, proteomics,
- Publication type
- Journal Article MeSH
Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, (13)C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments.
See more in PubMed
Aghaei K., Ehsanpour A. K., Komatsu S. (2008). Proteome analysis of potato under salt stress. J. Proteome Res. 7, 4858–4868. 10.1021/pr800460y PubMed DOI
Andrès C., Agne B., Kessler F. (2010). The TOC complex: preprotein gateway to the chloroplast. Biochim. Biophys. Acta 1803, 715–723. 10.1016/j.bbamcr.2010.03.004 PubMed DOI
Ashoub A., Beckhaus T., Berberich T., Karas M., Brüggemann W. (2013). Comparative analysis of barley leaf proteome as affected by drought stress. Planta 237, 771781. 10.1007/s00425-012-1798-4 PubMed DOI
Bednarek S. Y., Backues S. K. (2010). Plant dynamin-related protein families DRP1 and DRP2 in plant development. Biochem. Soc. Trans. 38, 797–806. 10.1042/BST0380797 PubMed DOI PMC
Budak H., Akpinar B. A., Unver T., Turktas M. (2013). Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol. Biol. 83, 89–103. 10.1007/s11103-013-0024-5 PubMed DOI
Caraux G., Pinloche S. (2005). Permutmatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21, 1280-1281. 10.1093/bioinformatics/bti141 PubMed DOI
Caruso G., Cavaliere C., Guarino C., Gubbiotti R., Foglia P., Laganà A. (2008). Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal. Bioanal. Chem. 391, 381–390. 10.1007/s00216-008-2008-x PubMed DOI
Chao W. S., Gu Y. Q., Pautot V., Bray E. A., Walling L. L. (1999). Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit. Plant Physiol. 120, 979–992. PubMed PMC
Cui S., Huang F., Wang J., Ma X., Cheng Y., Liu J. (2005). A proteomic analysis of cold stres responses in rice seedlings. Proteomics 5, 3162–3172. 10.1002/pmic.200401148 PubMed DOI
Dixon D. P., Skipsey M., Edwards R. (2010). Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71, 338–350. 10.1016/j.phytochem.2009.12.012 PubMed DOI
Edreva A. (2005). Pathogenesis-related proteins: research progress in the last 15 years. Gen. Appl. Plant Physiol. 31, 105–124. Available online at: http://www.bio21.bas.bg/ipp/gapbfiles/v-31/05_1-2_105-124.pdf
Eggert K., Zörb C., Mühling K. H., Pawelzik E. (2011). Proteome analysis of Fusarium infection in emmer grains (Triticum dicoccum). Plant Pathol. 60, 918–928. 10.1111/j.1365-3059.2011.02442.x DOI
Erban T., Hubert J. (2015). Two-dimensional gel proteomics analysis of Dermatophagoides farinae feces. Exp. Appl. Acarol. 65, 73–87. 10.1007/s10493-014-9848-1 PubMed DOI
Fatehi F., Hosseinzadeh A., Alizadeh H., Brimavandi T., Struik P. C. (2012). The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol. Biol. Rep. 39, 6387–6397. 10.1007/s11033-012-1460-z PubMed DOI
Fercha A., Capriotti A. L., Caruso G., Cavaliere C., Gherroucha H., Samperi R., et al. . (2013). Gel-free proteomics reveals potential biomarkers of priming- induced salt tolerance in durum wheat. J. Proteomics 91, 486–499. 10.1016/j.jprot.2013.08.010 PubMed DOI
Fercha A., Capriotti A. L., Caruso G., Cavaliere C., Samperi R., Stampachiacchiere S., et al. . (2014). Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J. Proteomics 108, 238–257. 10.1016/j.jprot.2014.04.040 PubMed DOI
Ford K. L., Cassin A., Bacic A. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front. Plant Sci. 2:44. 10.3389/fpls.2011.00044 PubMed DOI PMC
Ganeshan S., Vítámvás P., Fowler D. B., Chibbar R. N. (2008). Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J. Exp. Bot. 59, 2393–2402. 10.1093/jxb/ern112 PubMed DOI PMC
Ghabooli M., Khatabi B., Ahmadi F. S., Sepehri M., Mizraei M., Amirkhani A., et al. . (2013). Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteomics 94, 289–301. 10.1016/j.jprot.2013.09.017 PubMed DOI
Gharechahi J., Alizadeh H., RezaNaghavi M., Sharifi G. (2014). A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol. Biol. Rep. 41, 3897–3905. 10.1007/s11033-014-3257-8 PubMed DOI
Gong Z., Dong C. H., Lee H., Zhu J., Xiong L., Gong D., et al. . (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17, 256–267. 10.1105/tpc.104.027557 PubMed DOI PMC
Guo P. G., Baum M., Grando S., Ceccarelli S., Bai G. H., Li R. H., et al. . (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J. Exp. Bot. 60, 3531–3544. 10.1093/jxb/erp194 PubMed DOI PMC
Hlavá{c-entity}ková I., Vítámvás P., Šantrùèek J., Kosová K., Zelenková S., Prášil I. T., et al. (2013). Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv. Luxor. Int. J. Mol. Sci. 44, 8000–8024. 10.3390/ijms14048000 PubMed DOI PMC
Holková L., Prášil I. T., Bradáèová M., Vítámvás P., Chloupek O. (2009). Screening for frost tolerance in wheat using the expression of dehydrin genes Wcs120 and Wdhn13 at 17 °C. Plant Breed. 128, 420–422. 10.1111/j.1439-0523.2008.01606.x DOI
Kang G., Li G., Xu W., Peng X., Han Q., Zhu Y., et al. . (2012). Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J. Proteome Res. 11, 6066–6079. 10.1021/pr300728y PubMed DOI
Kausar R., Arshad M., Shahzad A., Komatsu S. (2013). Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids 44, 345–359. 10.1007/s00726-012-1338-3 PubMed DOI
Kav N. N. V., Srivastava S., Goonewardene L., Blade S. F. (2004). Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann. Appl. Biol. 145, 217–230. 10.1111/j.1744-7348.2004.tb00378.x DOI
Kawamura Y., Uemura M. (2003). Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J. 36, 141–154. 10.1046/j.1365-313X.2003.01864.x PubMed DOI
Ke Y., Han G., He H., Li J. (2009). Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem. Biophys. Res. Com. 379, 133–138. 10.1016/j.bbrc.2008.12.067 PubMed DOI
Kosová K., Prášil I. T., Prášilová P., Vítámvás P., Chrpová J. (2010). The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas 68 x Igri cross during cold acclimation. J. Plant Physiol. 167, 343–350. 10.1016/j.jplph.2009.09.020 PubMed DOI
Kosová K., Prášil I. T., Vítámvás P. (2008). The relationship between vernalization- and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biol. Plant. 52, 601–615. 10.1007/s10535-008-0120-6 DOI
Kosová K., Prášil I. T., Vítámvás P., Dobrev P., Motyka V., Floková K., et al. . (2012). Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 169, 567–576. 10.1016/j.jplph.2011.12.013 PubMed DOI
Kosová K., Vítámvás P., Planchon S., Renaut J., Vanková R., Prášil I. T. (2013). Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J. Proteome Res. 12, 4830–4845. 10.1021/pr400600g PubMed DOI
Kosová K., Vítámvás P., Prášil I. T. (2014). Wheat and barley dehydrins under cold, drought, and salinity—what can LEA-II proteins tell us about plant stress response? Front. Plant Sci. 5:343. 10.3389/fpls.2014.00343 PubMed DOI PMC
Kosová K., Vítámvás P., Prášil I. T., Renaut J. (2011). Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stres sresponse. J. Proteomics 74, 1301–1322. 10.1016/j.jprot.2011.02.006 PubMed DOI
Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 277, 680–685. 10.1038/227680a0 PubMed DOI
Laohavisit A., Davies J. M. (2011). Annexins. Tansley review. New Phytol. 189, 40–53. 10.1111/j.1469-8137.2010.03533.x PubMed DOI
Larcher W. (2003). Physiological Plant Ecology. 4th Edn Berlin; Heidelberg: Springer Verlag.
Lawlor D. W. (2013). Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J. Exp. Bot. 64, 83–108. 10.1093/jxb/ers326 PubMed DOI
LeClere S., Tellez R., Rampey R. A., Matsuda S. P. T., Bartel B. (2002). Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J. Biol. Chem. 277, 20446–20452. 10.1074/jbc.M111955200 PubMed DOI
Levitt J. (1980). Responses of Plants to Environmental Stress. Vol. II Water, Radiation, Salt, and Other Stresses. 2nd Edn New York, NY: Academic Press.
Manaa A., Ben Ahmed H., Valot B., Bouchet J. P., Aschi-Smiti S., Causse M., et al. . (2011). Salt and genotype impact on plant physiology and root proteome variations in tomato. J. Exp. Bot. 62, 2797–2813. 10.1093/jxb/erq460 PubMed DOI
O'Farrell P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021. PubMed PMC
Oommen A., Dixon R. A., Paiva N. L. (1994). The elicitor-inducible alfalafa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Plant Cell 6, 1789–1803. PubMed PMC
Patterson J., Ford K., Cassin A., Natera S., Bacic A. (2007). Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley. Plant Physiol. 144, 1612–1631. 10.1104/pp.107.096388 PubMed DOI PMC
Rampitsch C., Bykova N. V., McCallum B., Beimcik E., Ens W. (2006). Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics 6, 1897–1907. 10.1002/pmic.200500351 PubMed DOI
Rasoulnia A., Bihamta M. R., Peyghambari S. A., Alizadeh H., Rahnama A. (2011). Proteomic response of barley leaves to salinity. Mol. Biol. Rep. 38, 5055–5063. 10.1007/s11033-010-0651-8 PubMed DOI
Rinalducci S., Egidi K. G., Mahfoozi S., Godehkahriz S. J., Zolla L. (2011). The influence of temperature on plant development in a vernalization-requiring winter wheat:A2-DE based proteomic investigation. J. Proteomics 74, 643–659. 10.1016/j.jprot.2011.02.005 PubMed DOI
Sappl P. G., Oñate-Sánchez L., Singh K. B., Millar A. H. (2004). Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Mol. Biol. 54, 205–219. 10.1023/B:PLAN.0000028786.57439.b3 PubMed DOI
Sarhadi E., Mahfoozi S., Hosseini S. A., Salekdeh G. H. (2010). Cold accliamtion proteome analysis reveals close link between upregulation of low- temperature associated proteins and vernalization fulfillment. J. Proteome Res. 9, 5658–5667. 10.1021/pr100475r PubMed DOI
Skadsen R. W., Sathish P., Kaeppler H. F. (2000). Expression of thaumatin-like permatin PR-5 genes switches from the ovary wall to the aleurone in developing barley and oat seeds. Plant Sci. 156, 11–22. 10.1016/S0168-9452(00)00226-0 PubMed DOI
Talame V., Ozturk N. Z., Bohnert H. J., Tuberosa R. (2007). Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J. Exp. Bot 58, 229–240. 10.1093/jxb/erl163 PubMed DOI
Tanino K. K., McKersie B. D. (1985). Injury within the crown of winter-wheat seedlings after freezing and icing stress. Can. J. Bot. 63, 432–436. 10.1139/b85-053 DOI
The International Barley Genome Sequencing Consortium. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–717. 10.1038/nature11543 PubMed DOI
Thompson J. E., Hopkins M. T., Taylor C., Wang T. W. (2004). Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci. 9, 174–179. 10.1016/j.tplants.2004.02.008 PubMed DOI
Tommasini L., Svensson J. T., Rodriguez E. M., Wahid A., Malatrasi M., Kato K., et al. . (2008). Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct. Integr. Genomics 8, 387–405. 10.1007/s10142-008-0081-z PubMed DOI
Ueda A., Kathiresan A., Inada M., Narita Y., Nakamura T., Shi W. M., et al. . (2004). Osmotic stress in barley regulate expression of a different set of genes than salt stress does. J. Exp. Bot. 55, 2213–2218. 10.1093/jxb/erh242 PubMed DOI
Ueguchi-Tanaka M., Nakajima M., Ashikari M., Matsuoka M. (2007). Gibberellin receptor and its role in gibberellin signaling in plants. Annu. Rev. Plant Biol. 58, 183–198. 10.1146/annurev.arplant.58.032806.103830 PubMed DOI
Vanhee C., Zapotoczny G., Masquelier D., Ghislain M., Batoko H. (2011). The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 23, 785–805. 10.1105/tpc.110.081570 PubMed DOI PMC
Vítámvás P., Kosovaì K., Praìšilovaì P., Praìšil I. T. (2010). Accumulation of WCS120 protein in wheat cultivars grown at 9 or 17 °C in relation to their winter survival. Plant Breed. 129, 611-616. 10.1111/j.1439-0523.2010.01783.x PubMed DOI
Vítámvás P., Prášil I. T. (2008). WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiol. Biochem. 46, 970–976. 10.1016/j.plaphy.2008.06.006 PubMed DOI
Vítámvás P., Prášil I. T., Kosová K., Planchon S., Renaut J. (2012). Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics 12, 68–85. 10.1002/pmic.201000779 PubMed DOI
Vítámvás P., Saalbach G., Prášil I. T., Èapková V., Opatrná J., Jahoor A. (2007). WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J. Plant Physiol. 164, 1197–1207. 10.1016/j.jplph.2006.06.011 PubMed DOI
Wang W., Vignani R., Scali M., Cresti M. (2006). A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27, 2782-2786. 10.1002/elps.200500722 PubMed DOI
Wendelboe-Nelson C., Morris P. C. (2012). Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties. Proteomics 12, 3374–3385. 10.1002/pmic.201200154 PubMed DOI
Witzel K., Matros A., Strickert M., Kaspar S., Peukert M., Mühling K. H., et al. . (2014). Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins. Mol. Plant 7, 336–355. 10.1093/mp/sst063 PubMed DOI
Xu J., Li Y., Sun J., Du L., Zhang Y., Yu Q., et al. . (2013). Comparative physiological and proteomic response to abrupt low temperature stress in two winter wheat cultivars differing in low temperature tolerance. Plant Biol. 15, 292–303. 10.1111/j.1438-8677.2012.00639.x PubMed DOI
Yan S. P., Zhang Q. Y., Tang Z. C., Su W. A., Sun W. N. (2006). Comparative proteomic analysis provides new insight into chilling stress response in rice. Mol. Cell. Proteomics 5, 484–496. 10.1074/mcp.M500251-MCP200 PubMed DOI
Yang F., Jensen J. D., Svensson B., Jørgensen H. J. L., Collinge D. B., Finnie C. (2010). Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett. Proteomics 10, 3748–3755. 10.1002/pmic.201000243 PubMed DOI
Zhang W. J., Pedersen C., Kwaaitaal M., Gregersen P. L., Mørch S. M., Hanisch S., et al. . (2012). Interaction of barley powdery mildew effector candidate CSEP0055 with the defens protein PR17c. Mol. Plant Pathol. 13, 1110–1119. 10.1111/j.1364-3703.2012.00820.x PubMed DOI PMC
Breeding drought-resistant crops: G×E interactions, proteomics and pQTLS
Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome
Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective