Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23584021
PubMed Central
PMC3645728
DOI
10.3390/ijms14048000
PII: ijms14048000
Knihovny.cz E-zdroje
- MeSH
- 2D gelová elektroforéza MeSH
- aklimatizace fyziologie MeSH
- ječmen (rod) fyziologie MeSH
- listy rostlin fyziologie MeSH
- nadzemní části rostlin fyziologie MeSH
- peptidové mapování MeSH
- proteom izolace a purifikace fyziologie MeSH
- roční období MeSH
- rostlinné proteiny izolace a purifikace fyziologie MeSH
- studené klima MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
- rostlinné proteiny MeSH
Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600-700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and "enhanced disease susceptibility 1" in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley.
Zobrazit více v PubMed
Newton A.C., Flavell A.J., George T.S., Leat P., Mullholland B., Ramsay L., Revoredo-Giha C., Russell J., Steffenson B.J., Swanston J.S., et al. Crops that feed the world 4. Barley: A resilient crop? Strengths and weaknesses in the context of food security. Food Sec. 2011;3:141–178.
Limin A.E., Fowler D.B. Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum. aestivum L. em Thell) Ann. Bot. 2002;89:579–585. PubMed PMC
Hommo L. Hardening of some winter wheat (Triticum. aestivum L.), rye (Secale. cereale L.), triticale (× Triticosecale Wittmack) and winter barley (Hordeum. vulgare L.) cultivars during autumn and the final winter survival in Finland. Plant Breed. 1994;112:285–293.
Kacperska A. Plant Response to Low Temperature: Signaling Pathways Involved in Plant Acclimation. In: Margesin R., Schinner F., editors. Cold-Adapted Organisms—Ecology, Physiology, Enzymology and Molecular Biology. Springer; Berlin, Germany: 1999. pp. 79–103.
Thomashow M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571–599. PubMed
Timperio A.M., Egidi M.G., Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP) J. Proteomics. 2008;71:391–411. PubMed
Kosová K., Vítámvás P., Prášil I.T. Expression of dehydrins in wheat and barley under different temperatures. Plant Sci. 2011;180:46–52. PubMed
Kamal A.H.M., Kim K.H., Shin K.H., Choi J.S., Baik B.K., Tsujimoto H., Heo H.Y., Park C.S., Woo S.H. Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Aust. J. Crop. Sci. 2010;4:196–208.
Sarhadi E., Mahfoozi S., Hosseini S.A., Salekdeh G.H. Cold acclimation proteome analysis reveals close link between the up-regulation of low-temperature associated proteins and vernalization fulfillment. J. Proteome Res. 2010;9:5658–5667. PubMed
Rinalducci S., Egidi M.G., Karimzadeh G., Jazii F.R., Zolla L. Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis. 2011;32:1807–1818. PubMed
Vítámvás P., Prášil I.T., Kosová K., Planchon S., Renaut J. Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics. 2012;12:68–85. PubMed
Fowler D.B., Breton G., Limin A.E., Mahfoozi S., Sarhan F. Photoperiod and temperature interactions regulate low-temperature-induced gene expression in Barley. Plant Physiol. 2001;127:1676–1681. PubMed PMC
Kosová K., Holková L., Prášil I.T., Prášilová P., Bradáčová M., Vítámvás P., Čapková V. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum. vulgare L.) J. Plant Physiol. 2008;165:1142–1151. PubMed
Vítámvás P., Saalbach G., Prášil I.T., Čapková V., Opatrná J., Ahmed J. WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J. Plant Physiol. 2007;9:1197–1207. PubMed
Vítámvás P., Prášil I.T. WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiol. Biochem. 2008;46:970–976. PubMed
Greenup A.G., Sasani S., Oliver S.N., Walford S.A., Millar A.A., Trevaskis B. Transcriptome analysis of the vernalization response in barley (Hordeum. vulgare L.) seedlings. PLoS One. 2011;6:e17900. PubMed PMC
Svensson J.T., Crosatti C., Campoli C., Bassi R., Stanca A.M., Close T.J., Cattivelli L. Transcriptome analysis of cold acclimation in barley Albina and Xantha Mutants. Plant Physiol. 2006;141:257–270. PubMed PMC
Armbruster U., Pesaresi P., Pribil M., Hertle A., Leister D. Update on chloroplast research: New tools, new topics and new trends. Mol. Plant. 2001;4:1–16. PubMed
Šimková K., Kim C., Gacek K., Baruah A., Laloi C., Apel K. The chloroplast division mutant caa33 of Arabidopsis thaliana reveals the crucial impact of chloroplast homeostasis on stress acclimation and retrograde plastid-to-nucleus signaling. Plant J. 2012;69:701–712. PubMed PMC
Tanino K.K., McKersie B.D. Injury within the crown of winter wheat seedlings after freezing and icing stress. Can. J. Bot. 1985;63:432–436.
Livingston D.P., Premakumar R., Tallury S.P. Carbohydrate partitioning between upper and lower regions of the crown in oat and rye during cold acclimation and freezing. Cryobiology. 2006;52:200–208. PubMed
Winfield M.O., Lu C., Wilson I.D., Coghill J.A., Edwards K.J. Plant responses to cold: Transcriptome analysis of wheat. Plant Biotechnol. J. 2010;8:749–771. PubMed
Janská A., Aprile A., Zámečník J., Cattivelli L., Ovesná J. Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct. Integr. Genomics. 2011;11:307–325. PubMed PMC
Renaut J., Lutts S., Hoffmann L., Hausman J.F. Responses of poplar to chilling temperatures: Proteomic and physiological aspects. Plant Biol. 2004;6:81–90. PubMed
Hashimoto M., Komatsu S. Proteomic analysis of rice seedlings during cold stress. Proteomics. 2007;7:1293–302. PubMed
Ganeshan S., Vítámvás P., Fowler D.B., Chibbar R.N. Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J. Exp. Bot. 2008;59:2393–2402. PubMed PMC
Limin A.E., Corey A., Hayes P., Fowler D.B. Low-Temperature acclimation of barley cultivars used as parents in mapping populations: Response to photoperiod, vernalization and phenological development. Planta. 2007;226:139–146. PubMed
Kjellsen T.D., Shiryaeva L., Schröder W.P., Strimbeck G.R. Proteomics of extreme freezing tolerance in Siberian spruce (Picea. obovata) J. Proteomics. 2010;73:965–975. PubMed
Ifuku K., Ishihara S., Sato F. Molecular functions of oxygen-evolving complex family proteins in photosynthetic electron flow. J. Integr. Plant Biol. 2010;52:723–734. PubMed
Cui S., Huang F., Wang J., Ma X., Cheng Y., Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics. 2005;5:3162–3172. PubMed
Schweighofer A., Hirt H., Meskiene I. Plant PP2C phosphatases: Emerging functions in stress signaling. Trends Plant Sci. 2004;9:236–243. PubMed
Tahtiharju S., Palva T. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J. 2001;26:461–470. PubMed
Frydman J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu. Rev. Biochem. 2001;70:603–647. PubMed
Straus M.R., Rietz S., ver Loren van Themaat E., Bartsch M., Parker J.E. Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant J. 2010;62:628–640. PubMed
Vítámvás P., Kosová K., Prášilová P., Prášil I.T. Accumulation of WCS120 protein in wheat cultivars grown at 9 C or 17 C in relation to their winter survival. Plant Breed. 2010;129:611–616.
Oikawa A., Nagai K., Kato K., Kidou S. Gene silencing of barley P23k involved in secondary wall formation causes abnormal tiller formation and intercalary elongation. Breed. Sci. 2009;59:664–670.
Lehmann J., Atzorn R., Bruckner C., Reinbothe S., Leopold J., Wasternack C., Parthier B. Accumulation of jasmonate, abscisic-acid, specific transcripts and proteins in osmotically stressed barley leaf segmants. Planta. 1995;197:156–162.
Dunn M.A., Morris A., Jack P.L., Hughes M.A. A low-temperature-responsive translation elongation factor lα from barley (Hordeum. vulgare L.) Plant Mol. Biol. 1993;23:221–225. PubMed
Wallsgrove R.M., Turner J.C., Hall N.P., Kendall A.C., Bright S.W. Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. Plant Physiol. 1987;83:155–158. PubMed PMC
Pang Q.Y., Chen S.X., Dai S.J., Chen Y.Z., Wang Y., Yan X.F. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella. halophila. J. Proteome Res. 2010;9:2584–2599. PubMed
Yan S.P., Tang Z.C., Su W., Sun W.N. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics. 2005;5:235–244. PubMed
Cai H., Zhou Y., Xiao J., Li X., Zhang Q., Lian X. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009;28:527–537. PubMed
Skinner D.Z. Post-Acclimation transcriptome adjustment is a major factor in freezing tolerance of winter wheat. Funct. Integr. Genomics. 2009;9:513–523. PubMed
Hanano A., Burcklen M., Flenet M., Ivancich A., Louwagie M., Garin J., Blee E. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J. Biol. Chem. 2006;281:33140–33151. PubMed
Thangasamy S., Chen P.W., Lai M.H., Chen J., Jauh G.Y. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters. Plant J. 2012;71:288–302. PubMed
Liu X.D., Shen Y.G. NaCl-Induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella. salina. FEBS Lett. 2004;569:337–340. PubMed
Wang W., Tai F.J., Chen S.N. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J. Sep. Sci. 2008;31:2032–2039. PubMed
Strohalm M., Kavan D., Novak P., Volny M., Havlicek V. mMass 3: A Cross–Platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 2010;11:4648–4651. PubMed
Barley1.na32.annot.csv. [(accessed on 3 February 2013)]. Available online: http://www.affymetrix.com/estore/
UniProtKB. [(accessed on 3 February 2013)]. Available online: http://www.uniprot.org/
The Gene Ontology Consortium. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000;1:25–29. PubMed PMC
Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000;300:1005–1016. PubMed
Ye J., Fang L., Zheng H.K., Zhang Y., Chen J., Zhang Z.J., Wang J., Li S.T., Li R.Q., Bolund L., et al. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 2006;34:W293–W297. PubMed PMC
WEGO. [(accessed on 1 February 2013)]. Available online: http://wego.genomics.org.cn/cgi-bin/wego/index.pl.
R 2.15.0. [(accessed on 1 October 2012)]. Available online: http://www.r-project.org/
Grubbs F.E. Procedures for detecting outlying observations in samples. Technometrics. 1969;11:1–21.
Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective