Proteomics of stress responses in wheat and barley-search for potential protein markers of stress tolerance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
25566285
PubMed Central
PMC4263075
DOI
10.3389/fpls.2014.00711
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress factors, barley, biotic stress factors, protein markers, proteome, wheat,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Wheat (Triticum aestivum; T. durum) and barley (Hordeum vulgare) agricultural production is severely limited by various abiotic and biotic stress factors. Proteins are directly involved in plant stress response so it is important to study proteome changes under various stress conditions. Generally, both abiotic and biotic stress factors induce profound alterations in protein network covering signaling, energy metabolism (glycolysis, Krebs cycle, ATP biosynthesis, photosynthesis), storage proteins, protein metabolism, several other biosynthetic pathways (e.g., S-adenosylmethionine metabolism, lignin metabolism), transport proteins, proteins involved in protein folding and chaperone activities, other protective proteins (LEA, PR proteins), ROS scavenging enzymes as well as proteins affecting regulation of plant growth and development. Proteins which have been reported to reveal significant differences in their relative abundance or posttranslational modifications between wheat, barley or related species genotypes under stress conditions are listed and their potential role in underlying the differential stress response is discussed. In conclusion, potential future roles of the results of proteomic studies in practical applications such as breeding for an enhanced stress tolerance and the possibilities to test and use protein markers in the breeding are suggested.
Zobrazit více v PubMed
Alvarez S., Choudhury S. R., Pandey S. (2014). Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J. Proteome Res. 13, 1688–1701. 10.1021/pr401165b PubMed DOI
Ashoub A., Beckhaus T., Berberich T., Karas M., Brüggemann W. (2013). Comparative analysis of barley leaf proteome as affected by drought stress. Planta 237, 771–781. 10.1007/s00425-012-1798-4 PubMed DOI
Bahrman N., Le Gouis J., Negroni L., Amilhat L., Leroy P., Lainé A. L., et al. . (2004). Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics 4, 709–719. 10.1002/pmic.200300571 PubMed DOI
Brini F., Hanin M., Lumbreras V., Irar S., Pagès M., Masmoudi K. (2007). Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci. 172, 20–28 10.1016/j.plantsci.2006.07.011 DOI
Budak H., Akpinar B. A., Unver T., Turktas M. (2013). Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol. Biol. 83, 89–103. 10.1007/s11103-013-0024-5 PubMed DOI
Caruso G., Cavaliere C., Foglia P., Gubbiotti R., Samperi R., Laganà A. (2009). Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci. 177, 570–576 10.1016/j.plantsci.2009.08.007 DOI
Caruso G., Cavaliere C., Guarino C., Gubbiotti R., Foglia P., Laganà A. (2008). Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal. Bioanal. Chem. 391, 381–390. 10.1007/s00216-008-2008-x PubMed DOI
Cattivelli L., Rizza F., Badeck F. W., Mazzucotelli E., Mastrangelo A. M., Francia E., et al. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 105, 1–14 10.1016/j.fcr.2007.07.004 DOI
Crosatti C., Soncini C., Stanca A. M., Cattivelli L. (1995). The accumualtion of a cold-regulated chloroplastic protein is light dependent. Planta 195, 458–463. PubMed
Edreva A. (2005). Pathogenesis-related proteins: research progress in the last 15 years. Gen. Appl. Plant Physiol. 31, 105–124.
Eggert K., Pawelzik E. (2011). Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum). Proteomics 11, 972–985. 10.1002/pmic.201000322 PubMed DOI
Eggert K., Zörb C., Mühling K. H., Pawelzik E. (2011). Proteome analysis of Fusarium infection in emmer grains (Triticum dicoccum). Plant Pathol. 60, 918–928 10.1111/j.1365-3059.2011.02442.x DOI
Fatehi F., Hosseinzadeh A., Alizadeh H., Brimavandi T., Struik P. C. (2012). The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol. Biol. Rep. 39, 6387–6397. 10.1007/s11033-012-1460-z PubMed DOI
Fercha A., Capriotti A. L., Caruso G., Cavaliere C., Gherroucha H., Samperi R., et al. . (2013). Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat. J. Proteomics 91, 486–499. 10.1016/j.jprot.2013.08.010 PubMed DOI
Fercha A., Capriotti A. L., Caruso G., Cavaliere C., Samperi R., Stampachiacchiere S., et al. . (2014). Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J. Proteomics 108, 238–257. 10.1016/j.jprot.2014.04.040 PubMed DOI
Ford K. L., Cassin A., Bacic A. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front. Plant. Sci. 2:44. 10.3389/fpls.2011.00044 PubMed DOI PMC
Ghabooli M., Khatabi B., Ahmadi F. S., Sepehri M., Mizraei M., Amirkhani A., et al. . (2013). Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteomics 94, 289–301. 10.1016/j.jprot.2013.09.017 PubMed DOI
Gharechahi J., Alizadeh H., Reza Naghavi M., Sharifi G. (2014). A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol. Biol. Rep. 41, 3897–3905. 10.1007/s11033-014-3257-8 PubMed DOI
Gonzalez-Fernandez R., Jorrin-Novo J. V. (2012). Contribution of proteomics to the study of plant pathogenic fungi. J. Proteome Res. 11, 3–16. 10.1021/pr200873p PubMed DOI
Hajheidari M., Eivazi A., Buchanan B. B., Wong J. H., Majidi I., Salekdeh G. H. (2007). Proteomics uncovers a role for redox in drought tolerance in wheat. J. Proteome Res. 6, 1451–1460. 10.1021/pr060570j PubMed DOI
Hlaváèková I., Vítámvás P., Šantrůček J., Kosová K., Zelenková S., Prášil I. T., et al. . (2013). Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv. Luxor. Int. J. Mol. Sci. 44, 8000–8024. 10.3390/ijms14048000 PubMed DOI PMC
Hossain Z., Nouri M. Z., Komatsu S. (2012). Plant cell organelle proteomics in response to abiotic stress. J. Proteome Res. 11, 37–48. 10.1021/pr200863r PubMed DOI
Jacoby R. P., Millar A. H., Taylor N. L. (2010). Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J. Proteome Res. 9, 6595–6604. 10.1021/pr1007834 PubMed DOI
Jacoby R. P., Millar A. H., Taylor N. L. (2013). Investigating the role of respiration in plant salinity tolerance by analyzing mitochondrial proteomes from wheat and a salinity-tolerant amphiploid (Wheat × Lophopyrum elongatum). J. Proteome Res. 12, 4807–4829. 10.1021/pr400504a PubMed DOI
Jorrin-Novo J. V., Maldonado A. M., Echavarría-Zomeno S., Valledor L., Castillejo M. A., Curto M., et al. . (2009). Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J. Proteomics 72, 285–314. 10.1016/j.jprot.2009.01.026 PubMed DOI
Kamal A. H. M., Cho K., Kim D. E., Uozumi N., Chung K. Y., Lee S. Y., et al. . (2012). Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol. Biol. Rep. 39, 9059–9074. 10.1007/s11033-012-1777-7 PubMed DOI
Kang G., Li G., Xu W., Peng X., Han Q., Zhu Y., et al. . (2012). Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J. Proteome Res. 11, 6066–6079. 10.1021/pr300728y PubMed DOI
Kosová K., Chrpová J., Šíp V. (2008b). Recent advances in breeding of cereals for resistance to barley yellow Dwarf virus - a review. Czech J. Genet. Plant Breed. 44, 1–10.
Kosová K., Chrpová J., Šíp V. (2009). Cereal resistance to Fusarium head blight and possibilities of its improvement through breeding. Czech J. Genet. Plant Breed. 45, 87–105.
Kosová K., Holková L., Prášil I. T., Prášilová P., Bradáčová M., Vítámvás P., et al. . (2008c). Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). J. Plant Physiol. 165, 1142–1151. 10.1016/j.jplph.2007.10.009 PubMed DOI
Kosová K., Prášil I. T., Vítámvás P. (2008a). The relationship between vernalization- and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biol. Plant. 52, 601–615 10.1007/s10535-008-0120-6 DOI
Kosová K., Prášil I. T., Vítámvás P. (2013a). Protein contribution to plant salinity response and tolerance acquisition. Int. J. Mol. Sci. 14, 6757–6789. 10.3390/ijms14046757 PubMed DOI PMC
Kosová K., Prášil I. T., Vítámvás P., Dobrev P., Motyka V., Floková K., et al. . (2012). Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 169, 567–576. 10.1016/j.jplph.2011.12.013 PubMed DOI
Kosová K., Vítámvás P., Planchon S., Renaut J., Vanková R., Prášil I. T. (2013b). Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J. Proteome Res. 12, 4830–4845. 10.1021/pr400600g PubMed DOI
Kosová K., Vítámvás P., Prášil I. T., Renaut J. (2011). Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J. Proteomics 74, 1301–1322. 10.1016/j.jprot.2011.02.006 PubMed DOI
Kosová K., Vítámvás P., Prášilová P., Prášil I. T. (2013c). Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. Biol. Plant. 57, 105–112 10.1007/s10535-012-0237-5 DOI
Labhilili M., Joudrier P., Gautier M. F. (1995). Characterization of cDNAs encoding Triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance. Plant Sci. 112, 219–230 10.1016/0168-9452(95)04267-9 DOI
Larcher W. (2003). Physiological Plant Ecology, 4th Edn. Berlin; Heidelberg; Springer Verlag.
Levitt J. (1980). Responses of Plants to Environmental Stress. Chilling, Freezing and High Temperature Stresses, 2nd Edn. New York, NY: Academic Press.
Li G., Peng X., Xuan H., Wei L., Yang Y., Guo T., et al. . (2013). Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions. J. Proteome Res. 12, 4846–4861. 10.1021/pr4008283 PubMed DOI
Li X., Cai J., Liu F., Dai T., Cao W., Jiang D. (2014). Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Funct. Plant Biol. 41, 690–703 10.1071/FP13306 PubMed DOI
Majoul T., Bancel E., Triboi E., Ben Hamida J., Branlard G. (2004). Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4, 505–513. 10.1002/pmic.200300570 PubMed DOI
Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19. 10.1016/j.tplants.2005.11.002 PubMed DOI
Mori S., Nishizawa N. (1987). Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol. 28, 1081–1092.
Munns R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167, 645–663. 10.1111/j.1469-8137.2005.01487.x PubMed DOI
Patterson J., Ford K., Cassin A., Natera S., Bacic A. (2007). Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley. Plant Physiol. 144, 1612–1631. 10.1104/pp.107.096388 PubMed DOI PMC
Peng Z., Wang M., Li F., Lv H., Li C., Xia G. (2009). A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol. Cell. Proteomics 8, 2676–2686. 10.1074/mcp.M900052-MCP200 PubMed DOI PMC
Rampitsch C., Bykova N. V., McCallum B., Beimcik E., Ens W. (2006). Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics 6, 1897–1907. 10.1002/pmic.200500351 PubMed DOI
Rasoulnia A., Bihamta M. R., Peyghambari S. A., Alizadeh H., Rahnama A. (2011). Proteomic response of barley leaves to salinity. Mol. Biol. Rep. 38, 5055–5063. 10.1007/s11033-010-0651-8 PubMed DOI
Rinalducci S., Egidi K. G., Mahfoozi S., Godehkahriz S. J., Zolla L. (2011b). The influence of temperature on plant development in a vernalization-requiring winter wheat: A 2-DE based proteomic investigation. J. Proteomics 74, 643–659. 10.1016/j.jprot.2011.02.005 PubMed DOI
Rinalducci S., Egidi M. G., Karimzadeh G., Jazii F., Zolla L. (2011a). Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32, 1807–1818. 10.1002/elps.201000663 PubMed DOI
Rollins J. A., Habte E., Templer S. E., Colby T., Schmidt J., von Korff M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J. Exp. Bot. 64, 3201–3212. 10.1093/jxb/ert158 PubMed DOI PMC
Sarhadi E., Mahfoozi S., Hosseini S. A., Salekdeh G. H. (2010). Cold accliamtion proteome analysis reveals close link between upregulation of low-temperature associated proteins and vernalization fulfillment. J. Proteome Res. 9, 5658–5667. 10.1021/pr100475r PubMed DOI
Sergeant K., Renaut J. (2010). Plant biotic stress and proteomics. Curr. Proteomics 7, 275–297 10.2174/157016410793611765 DOI
Skylas D. J., Cordwell S. J., Hains P. G., Larsen M. R., Basseal D. J., Walsch B. J., et al. (2002). Heat shock of wheat during grain filling: Proteins associated with heat tolerance. J. Cereal Sci. 35, 175–188 10.1006/jcrs.2001.0410 DOI
Sugimoto M., Takeda K. (2009). Proteomic analysis of specific proteins in the root of salt-tolerant barley. Biosci. Biotechnol. Biochem. 73, 2762–2765. 10.1271/bbb.90456 PubMed DOI
The International Barley Genome Sequencing Consortium. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–717. 10.1038/nature11543 PubMed DOI
The International Wheat Genome Sequencing Consortium. (2014). Slicing the wheat genome. Science 345, 285–287. 10.1126/science PubMed DOI
Thomashow M. F. (1999). Plant cold acclimation. Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571–599. 10.1146/annurev.arplant.50.1.571 PubMed DOI
Thompson J. E., Hopkins M. E., Taylor C., Wang T. W. (2004). Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci. 9, 174–179. 10.1016/j.tplants.2004.02.008 PubMed DOI
Vágújfalvi A., Crosatti C., Galiba G., Dubcovsky J., Cattivelli L. (2000). Two loci of chromosome 5A regulate the differential cold-dependent expression of the cor-14b gene in frost-tolerant and frost-sensitive genotypes. Mol. Gen. Genet. 263, 194–200. 10.1007/s004380051160 PubMed DOI
Vágújfalvi A., Galiba G., Cattivelli L., Dubcovsky J. (2003). The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol. Gen. Genomics 269, 60–67. 10.1007/s00438-003-0806-6 PubMed DOI PMC
Vítámvás P., Kosová K., Prášilová P., Prášil I. T. (2010). Accumulation of WCS120 protein in wheat cultivars grown at 9°C or 17°C in relation to their winter survival. Plant Breed. 129, 611–616. 10.1111/j.1439-0523.2010.01783.x PubMed DOI
Vítámvás P., Prášil I. T., Kosová K., Planchon S., Renaut J. (2012). Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics 12, 68–85. 10.1002/pmic.201000779 PubMed DOI
Vítámvás P., Saalbach G., Prášil I. T., Čapková V., Opatrná J., Jahoor A. (2007). WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J. Plant Physiol. 164, 1197–1207. 10.1016/j.jplph.2006.06.011 PubMed DOI
Wang M. C., Peng Z. Y., Li C. L., Li F., Liu C., Xia G. M. (2008). Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8, 1470–1489. 10.1002/pmic.200700569 PubMed DOI
Wendelboe-Nelson C., Morris P. C. (2012). Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties. Proteomics 12, 3374–3385. 10.1002/pmic.201200154 PubMed DOI
Witzel K., Matros A., Strickert M., Kaspar S., Peukert M., Mühling K. H., et al. . (2014). Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins. Mol. Plant 7, 336–355. 10.1093/mp/sst063 PubMed DOI
Witzel K., Weidner A., Surabhi G. K., Börner A., Mock H. P. (2009). Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J. Exp. Bot. 60, 3545–3557. 10.1093/jxb/erp198 PubMed DOI PMC
Xu J., Li Y., Sun J., Du L., Zhang Y., Yu Q., et al. . (2013). Comparative physiological and proteomic response to abrupt low temperature stress in two winter wheat cultivars differing in low temperature tolerance. Plant Biol. 15, 292–303. 10.1111/j.1438-8677.2012.00639.x PubMed DOI
Yang F., Jensen J. D., Spliid N. H., Svensson B., Jacobsen S., Jørgensen L. N., et al. . (2010b). Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley. J. Proteomics 73, 743–752. 10.1016/j.jprot.2009 PubMed DOI
Yang F., Jensen J. D., Svensson B., Jørgensen H. J. L., Collinge D. B., Finnie C. (2010a). Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett. Proteomics 10, 3748–3755. 10.1002/pmic.201000243 PubMed DOI
Yang F., Melo-Braga M. N., Larsen M. R., Jørgensen H. J. L., Palmisano G. (2013). Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics. Mol. Cell. Proteomics 12, 2497–2508. 10.1074/mcp.M113.027532 PubMed DOI PMC
Ye J., Wang S., Zhang F., Xie D., Yao Y. (2013). Proteomic analysis of leaves of different wheat genotypes subjected to PEG6000 stress and rewatering. Plant OMICS J. 6, 286–294.
Yong W. D., Xu Y. Y., Xu W. Z., Wang X., Li N., Wu J. S., et al. . (2003). Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta 217, 261–270. 10.1007/s00425-003-0994-7 PubMed DOI
Zhang H., Han B., Wang T., Chen S., Li H., Zhang Y., et al. . (2012). Mechanisms of plant stress response: Insights from proteomics. J. Proteome Res. 11, 49–67. 10.1021/pr200861w PubMed DOI
Zhang M., Lv D., Ge P., Bian Y., Chen G., Zhu G., et al. . (2014). Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J. Proteomics 109, 290–308. 10.1016/j.jprot.2014.07.010 PubMed DOI
Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome
Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective