Recombinant expression of osmotin in barley improves stress resistance and food safety during adverse growing conditions
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31075104
PubMed Central
PMC6510477
DOI
10.1371/journal.pone.0212718
PII: PONE-D-19-03718
Knihovny.cz E-zdroje
- MeSH
- bezpečnost potravin * MeSH
- biologická adaptace MeSH
- ektopická exprese * MeSH
- fyziologický stres genetika MeSH
- geneticky modifikované rostliny MeSH
- interakce hostitele a patogenu genetika MeSH
- ječmen (rod) genetika MeSH
- lidé MeSH
- rekombinantní proteiny * MeSH
- rostlinné proteiny genetika MeSH
- tabák genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rekombinantní proteiny * MeSH
- rostlinné proteiny MeSH
BACKGROUND: Although many genetic manipulations of crops providing biofortified or safer food have been done, the acceptance of biotechnology crops still remains limited. We report on a transgenic barley expressing the multi-functional protein osmotin that improves plant defense under stress conditions. METHODS: An Agrobacterium-mediated technique was used to transform immature embryos of the spring barley cultivar Golden Promise. Transgenic barley plants of the T0 and T1 generation were evaluated by molecular methods. Transgenic barley tolerance to stress was determined by chlorophyll, total protein, malondialdehyde and ascorbate peroxidase content. Methanol extracts of i) Fusarium oxysporum infected or ii) salt-stressed plants, were characterized by their acute toxicity effect on human dermal fibroblasts (HDF), genotoxicity and affection of biodiversity interactions, which was tested through monitoring barley natural virus pathogen-host interactions-the BYDV and WDV viruses transmitted to the plants by aphids and leafhoppers. RESULTS: Transgenic plants maintained the same level of chlorophyll and protein, which significantly declined in wild-type barley under the same stressful conditions. Salt stress evoked higher ascorbate peroxidase level and correspondingly less malondialdehyde. Osmotin expressing barley extracts exhibited a lower cytotoxicity effect of statistical significance than that of wild-type plants under both types of stress tested on human dermal fibroblasts. Extract of Fusarium oxysporum infected transgenic barley was not able to damage DNA in the Comet assay, which is in opposite to control plants. Moreover, this particular barley did not affect the local biodiversity. CONCLUSION: Our findings provide a new perspective that could help to evaluate the safety of products from genetically modified crops.
Zobrazit více v PubMed
Singh NK, Nelson DE, Kuhn D, Hasegawa PM, Bressan RA. Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential. Plant Physiol. 1989;90:1096–101. Epub 1989/07/01. PubMed PMC
Singh NK, Handa AK, Hasegawa PM, Bressan RA. Proteins Associated with Adaptation of Cultured Tobacco Cells to NaCl. Plant Physiol. 1985;79:126–37. PubMed PMID: PMC1074839. PubMed PMC
Viktorova J, Krasny L, Kamlar M, Novakova M, Mackova M, Macek T. Osmotin, a Pathogenesis-Related Protein. Curr Protein Pept Sc. 2012;13:672–81. PubMed PMID: WOS:000311910500008. PubMed
Liu D, Raghothama KG, Hasegawa PM, Bressan RA. Disease responses to fungal infection in transgenic tobacco and potato plants that overexpress the osmotin gene. Plant Physiol. 1993;102:1888–1892. PubMed PMID: WOS:A1993LD89000953.
Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J, et al. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech. 2017;7 10.1007/s13205-017-0870-y PubMed PMID: WOS:000405242100001. PubMed DOI PMC
Noori SAS, Sokhansanj A. Wheat plants containing an osmotin gene show enhanced ability to produce roots at high NaCl concentration. Russ J Plant Physl. 2008;55:256–8. 10.1134/s1021443708020143 PubMed PMID: WOS:000254839800014. DOI
Rao MVR, Parameswari C, Sripriya R, Veluthambi K. Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. Plant Cell Rep. 2011;30:1241–52. 10.1007/s00299-011-1033-y PubMed PMID: WOS:000291604100009. PubMed DOI
Beyer P, Al-Babili S, Ye XD, Lucca P, Schaub P, Welsch R, et al. Golden rice: Introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr. 2002;132:506S–510S. PubMed PMID: WOS:000174189800032. 10.1093/jn/132.3.506S PubMed DOI
Capellesso AJ, Cazella AA, Schmitt AL, Farley J, Martins DA. Economic and environmental impacts of production intensification in agriculture: comparing transgenic, conventional, and agroecological maize crops. Agroecol Sust Food. 2016;40:215–36. 10.1080/21683565.2015.1128508 PubMed PMID: WOS:000374240100003. DOI
Talsma EF, Melse-Boonstra A, Brouwer ID. Acceptance and adoption of biofortified crops in low- and middle-income countries: a systematic review. Nutr Rev. 2017;75:798–829. 10.1093/nutrit/nux037 PubMed PMID: WOS:000412812700003. PubMed DOI PMC
Qaim M, Kouser S. Genetically Modified Crops and Food Security. PLoS ONE. 2013;8 10.1371/journal.pone.0064879 PubMed PMID: WOS:000320579400029. PubMed DOI PMC
Nejat N, Mantri N. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence. Curr Issues Mol Biol. 2017;23:1–15. 10.21775/cimb.023.001 PubMed PMID: WOS:000405934400001. PubMed DOI
Al Sinani SSS, Eltayeb EA. The steroidal glycoalkaloids solamargine and solasonine in Solanum plants. S Afr J Bot. 2017;112:253–69. 10.1016/j.sajb.2017.06.002 PubMed PMID: WOS:000410624200027. DOI
Lee ST, Welch KD, Panter KE, Gardner DR, Garrossian M, Chang CWT. Cyclopamine: From Cyclops Lambs to Cancer Treatment. J Agr Food Chem. 2014;62:7355–62. 10.1021/jf5005622 PubMed PMID: WOS:000339694300005. PubMed DOI
Breinholt V, Larsen JC. Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF7 cell proliferation assay. Chem Res Toxicol. 1998;11:622–9. 10.1021/tx970170y PubMed PMID: WOS:000074301100005. PubMed DOI
Di Virgilio AL, Iwami K, Watjen W, Kahl R, Degen GH. Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells. Toxicol Lett. 2004;151:151–62. 10.1016/j.toxlet.2004.04.005 PubMed PMID: WOS:000222226100018. PubMed DOI
Clifford RJ, Kaplan JH. Human Breast Tumor Cells Are More Resistant to Cardiac Glycoside Toxicity Than Non-Tumorigenic Breast Cells. PLoS ONE. 2013;8 10.1371/journal.pone.0084306 PubMed PMID: WOS:000328734200111. PubMed DOI PMC
Smith JA, Madden T, Vijjeswarapu M, Newman RA. Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem Pharmacol. 2001;62:469–72. 10.1016/s0006-2952(01)00690-6 PubMed PMID: WOS:000169834300010. PubMed DOI
Alshannaq A, Yu JH. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int J Env Res Pu. 2017;14 10.3390/ijerph14060632 PubMed PMID: WOS:000404107600080. PubMed DOI PMC
Harwood WA, Bartlett JG, Alves SC, Perry M, Smedley MA, Leyland N, et al. Barley transformation using Agrobacterium-mediated techniques. Methods in molecular biology (Clifton, NJ). 2009;478:137–47. Epub 2008/11/15. 10.1007/978-1-59745-379-0_9 . PubMed DOI
Rapacz M, Stępień A, Skorupa K. Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age. Acta Physiol Plant. 2012;34:1723–33. 10.1007/s11738-012-0967-1 DOI
Kundu JK, Jarosova J, Gadious S, Cervena G. Discrimination of Three BYDV Species by One-step RT-PCR-RFLP and Sequence Based Methods in Cereal Plants from the Czech Republic. Cereal Res Commun. 2009;37:541–50.
Jarosova J, Chrpova J, Sip V, Kundu JK. A comparative study of the Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance. Plant Pathol. 2013;62:436–43. 10.1111/j.1365-3059.2012.02644.x DOI
Kundu JK, Gadiou S, Cervena G. Discrimination and genetic diversity of Wheat dwarf virus in the Czech Republic. Virus Genes. 2009;38:468–74. Epub 2009/03/28. 10.1007/s11262-009-0352-3 . PubMed DOI
Tang D, Qian H, Zhao L, Huang D, Tang K. Transgenic tobacco plants expressingBoRS1 gene fromBrassica oleracea var.acephala show enhanced tolerance to water stress. J Bioscience. 2005;30:647–55. 10.1007/BF02703565 PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. 10.1016/0003-2697(76)90527-3 PubMed DOI
Nakano Y, Asada K. Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981;22:867–80. 10.1093/oxfordjournals.pcp.a076232 DOI
Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–11. 10.1007/s004250050524 PubMed DOI
Viktorova J, Rehorova K, Musilova L, Suman J, Lovecka P, Macek T. New findings in potential applications of tobacco osmotin. Protein Expres Purif. 2017;129:84–93. 10.1016/j.pep.2016.09.008 PubMed PMID: WOS:000386194500011. PubMed DOI
Riss TL MR, Niles AL, et al. Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2013. PubMed
Kubásek J, Vojtěch D, Jablonská E, Pospíšilová I, Lipov J, Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater Sci Eng C. 2016;58:24–35. 10.1016/j.msec.2015.08.015 PubMed DOI
Jarošová J, Kundu JK. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010;10:146 10.1186/1471-2229-10-146 PubMed DOI PMC
Gadiou S, Ripl J, Janourova B, Jarosova J, Kundu JK. Real-time PCR assay for the discrimination and quantification of wheat and barley strains of Wheat dwarf virus. Virus genes. 2012;44:349–55. Epub 2011/12/17. 10.1007/s11262-011-0699-0 . PubMed DOI
Sood P, Bhattacharya A, Sood A. Problems and possibilities of monocot transformation. Biol Plantarum. 2011;55:1–15. 10.1007/s10535-011-0001-2 PubMed PMID: WOS:000286669700001. DOI
Hisano H, Meints B, Moscou MJ, Cistue L, Echavarri B, Sato K, et al. Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017;36:611–20. 10.1007/s00299-017-2107-2 PubMed PMID: WOS:000398735600009. PubMed DOI
Wu H, Sparks CA, Jones HD. Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breeding. 2006;18:195–208. 10.1007/s11032-006-9027-0 DOI
Onyango SO, Roderick H, Tripathi JN, Collins R, Atkinson HJ, Oduor RO, et al. The ZmRCP-1 promoter of maize provides root tip specific expression of transgenes in plantain. J Biol Res-Thessalon. 2016;23:4 10.1186/s40709-016-0041-z PubMed DOI PMC
Bala M, Thankappan R, Kumar A, Mishra G, Dobraia JR, Kirti PB. Overexpression of a fusion defensin genes from radish and fenugreek improves resistance against leaf spot diseases caused by Cercospora arachidicola and Phaeoisariopsis personata in peanut. Turk J Biol. 2016;40:139–149. PubMed PMC
Wang Q, Zhu S, Liu Y, Li R, Tan S, Wang S, et al. Overexpression of Jatropha curcas Defensin (JcDef) Enhances Sheath Blight Disease Resistance in Tobacco. J Phytopathol. 2017;165:15–21.
Brady CJ, Gibson TS, Barlow EWR, Speirs J, Wyn Jones RG. Salt-tolerance in plants. I. Ions, compatible organic solutes and the stability of plant ribosomes. Plant Cell Environ. 1984;7:571–8. 10.1111/1365-3040.ep11591840 DOI
Wang X-s, Han J-g. Changes of Proline Content, Activity, and Active Isoforms of Antioxidative Enzymes in Two Alfalfa Cultivars Under Salt Stress. Agr Sci China. 2009;8:431–40. 10.1016/S1671-2927(08)60229-1 DOI
Kosová K, Vítámvás P, Prášil IT. Proteomics of stress responses in wheat and barley—search for potential protein markers of stress tolerance. Front Plant Sci. 2014;5:711 10.3389/fpls.2014.00711 PubMed PMID: PMC4263075. PubMed DOI PMC
Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A, et al. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteomics. 2013;94:289–301. 10.1016/j.jprot.2013.09.017 PubMed DOI
Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A. Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem. 2008;391:381–90. 10.1007/s00216-008-2008-x PubMed DOI
Husaini AM, Abdin MZ. Development of transgenic strawberry (Fragaria x ananassa Duch.) plants tolerant to salt stress. Plant Sci. 2008;174:446–55. 10.1016/j.plantsci.2008.01.007 DOI
Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC. Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma. 2010;245:133–41. Epub 2010/05/15. 10.1007/s00709-010-0158-0 . PubMed DOI
Subramanyam K, Sailaja KV, Subramanyam K, Muralidhara Rao D, Lakshmidevi K. Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tiss Org. 2011;105:181–92. 10.1007/s11240-010-9850-1 DOI
Subramanyam K, Arun M, Mariashibu TS, Theboral J, Rajesh M, Singh NK, et al. Overexpression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and fungal infections. Planta. 2012;236:1909–25. Epub 2012/09/01. 10.1007/s00425-012-1733-8 . PubMed DOI
Kamlar M, Uhlík O, Kohout L, Šanda M, Macek T. Affinity chromatography as the method for brassinosteroid-binding protein isolation. J Biotechnol. 2010;150:490–490. 10.1016/j.jbiotec.2010.09.933 PubMed DOI
Rothova O, Hola D, Kocova M, Tumova L, Hnilicka F, Hnilickova H, et al. 24-epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids. 2014;85:44–57. Epub 2014/04/29. 10.1016/j.steroids.2014.04.006 . PubMed DOI
Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol. 2012;35:1011–9. PubMed PMID: PMC3571416. PubMed PMC
Yan H, Li Q, Park SC, Wang X, Liu YJ, Zhang YG, et al. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol Biochem. 2016;109:20–7. Epub 2016/09/14. 10.1016/j.plaphy.2016.09.003 . PubMed DOI
Subramanyam K, Sailaja KV, Subramanyam K, Rao DM, Lakshmidevi K. Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tiss Org. 2011;105:181–92. 10.1007/s11240-010-9850-1 PubMed PMID: WOS:000289441100005. DOI
Saxena R. Chapter 5—Arthritis as a Disease of Aging and Changes in Antioxidant Status A2—Preedy, Victor R. Aging. San Diego: Academic Press; 2014. p. 49–59.
Silvestri C, Celletti S, Cristofori V, Astolfi S, Ruggiero B, Rugini E. Olive (Olea europaea L.) plants transgenic for tobacco osmotin gene are less sensitive to in vitro-induced drought stress. Acta Physiol Plant. 2017;39:9 10.1007/s11738-017-2535-1 PubMed PMID: WOS:000411083700017. DOI
Safety and nutritional assessment of GM plants and derived food and feed: The role of animal feeding trials. Food Chem Toxicol. 2008;46:S2–S70. 10.1016/j.fct.2008.02.008 PubMed DOI
Matthews D, Jones H, Gans P, Coates S, Smith LM. Toxic secondary metabolite production in genetically modified potatoes in response to stress. J Agr Food Chem. 2005;53:7766–76. Epub 2005/09/30. 10.1021/jf050589r . PubMed DOI
Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16:497–516. 10.1128/CMR.16.3.497-516.2003 PubMed PMID: PMC164220. PubMed DOI PMC
Ostry V, Ovesna J, Skarkova J, Pouchova V, Ruprich J. A review on comparative data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize. Mycotoxin res. 2010;26:141–5. Epub 2010/08/01. 10.1007/s12550-010-0056-5 . PubMed DOI
Carpenter JE. Impact of GM crops on biodiversity. GM crops. 2011;2:7–23. Epub 2011/08/17. 10.4161/gmcr.2.1.15086 . PubMed DOI
Ammann K. Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends Biotechnol. 2005;23:388–94. 10.1016/j.tibtech.2005.06.008 PubMed DOI
Choudhury S, Hu HL, Meinke H, Shabala S, Westmore G, Larkin P, et al. Barley yellow dwarf viruses: infection mechanisms and breeding strategies. Euphytica. 2017;213 10.1007/s10681-017-1955-8 PubMed PMID: WOS:000405440700008. DOI
Lazebnik J, Dicke M, ter Braak CJF, van Loon JJA. Biodiversity analyses for risk assessment of genetically modified potato. Agr Ecosyst Environ. 2017;249:196–205. 10.1016/j.agee.2017.08.017 DOI
Lozzia GC, Furlanis C, Manachini B, Rigamonti IE. Effects of Bt corn on Rhopalosiphum padi L. (Rhynchota Aphididae) and on its predator Chrysoperla carnea Stephen (Neuroptera Chrysopidae). B Zool Agr Bachic. 1998;30:153–164.
Homozygous Transgenic Barley (Hordeum vulgare L.) Plants by Anther Culture