Homozygous Transgenic Barley (Hordeum vulgare L.) Plants by Anther Culture
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund
PubMed
32698526
PubMed Central
PMC7412030
DOI
10.3390/plants9070918
PII: plants9070918
Knihovny.cz E-zdroje
- Klíčová slova
- androgenesis barley, double haploid, embryo culture, transformation,
- Publikační typ
- časopisecké články MeSH
Production of homozygous lines derived from transgenic plants is one of the important steps for phenotyping and genotyping transgenic progeny. The selection of homozygous plants is a tedious process that can be significantly shortened by androgenesis, cultivation of anthers, or isolated microspores. Doubled haploid (DH) production achieves complete homozygosity in one generation. We obtained transgenic homozygous DH lines from six different transgenic events by using anther culture. Anthers were isolated from T0 transgenic primary regenerants and cultivated in vitro. The ploidy level was determined in green regenerants. At least half of the 2n green plants were transgenic, and their progeny were shown to carry the transgene. The process of dihaploidization did not affect the expression of the transgene. Embryo cultures were used to reduce the time to seed of the next generation. The application of these methods enables rapid evaluation of transgenic lines for gene function studies and trait evaluation.
Zobrazit více v PubMed
Hu H. In vitro induced haploids in wheat. In: Jain S.M., Sopory S.K., Veilleux R.E., editors. In Vitro Haploid Production in Higher Plants: Volume 4—Cereals. Springer; Dordrecht, The Netherlands: 1997. pp. 73–97. DOI
Devaux P., Pickering R. Haploids in the improvement of poaceae. In: Don Palmer C.E., Keller W.A., Kasha K.J., editors. Haploids in Crop Improvement II. Biotechnology in Agriculture and Forestry. Springer; Berlin/Heidelberg, Germany: 2005. pp. 215–242. DOI
Yan G., Liu H., Wang H., Lu Z., Wang Y., Mullan D., Hamblin J., Liu C. Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front. Plant Sci. 2017;8:1786. doi: 10.3389/fpls.2017.01786. PubMed DOI PMC
Mullerova E., Novotny J., Vagera J., Harwood W.A., Ohnoutkova L. Induction of androgenesis in transgenic barley plants; Proceedings of the Induction of Androgenesis in Transgenic Barley Plants; Bled, Slovenia. 1–5 July 2000; pp. 29–32.
Coronado M.J., Hensel G., Broeders S., Otto I., Kumlehn J. Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination. Acta Physiol. Plant. 2005;27:591–599. doi: 10.1007/s11738-005-0063-x. DOI
Kapusi E., Hensel G., Coronado M.J., Broeders S., Marthe C., Otto I., Kumlehn J. The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants. Plant Mol. Biol. 2013;81:149–160. doi: 10.1007/s11103-012-9988-9. PubMed DOI PMC
Kumlehn J., Serazetdinova L., Hensel G., Becker D., Loerz H. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol. J. 2006;4:251–261. doi: 10.1111/j.1467-7652.2005.00178.x. PubMed DOI
Holme I.B., Brinch-Pedersen H., Lange M., Holm P.B. Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep. 2008;27:1833–1840. doi: 10.1007/s00299-008-0605-y. PubMed DOI
Brew-Appiah R.A.T., Ankrah N., Liu W., Konzak C.F., Von Wettstein D., Rustgi S. Generation of doubled haploid transgenic wheat lines by microspore transformation. PLoS ONE. 2013;8:e80155. doi: 10.1371/journal.pone.0080155. PubMed DOI PMC
Bhowmik P., Ellison E., Polley B., Bollina V., Kulkarni M., Ghanbarnia K., Song H., Gao C., Voytas D.F., Kagale S. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci. Rep. 2018;8:6502. doi: 10.1038/s41598-018-24690-8. PubMed DOI PMC
Cegielska-Taras T., Pniewski T., Szała L. Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J. Appl. Genet. 2008;49:343–347. doi: 10.1007/BF03195632. PubMed DOI
Chen C., Xiao H., Zhang W., Wang A., Xia Z., Li X., Zhai W., Cheng Z., Zhu L. Adapting rice anther culture to gene transformation and RNA interference. Sci. China Ser. C Life Sci. 2006;49:414–428. doi: 10.1007/s11427-006-2013-2. PubMed DOI
Dwivedi S.L., Britt A.B., Tripathi L., Sharma S., Upadhyaya H.D., Ortiz R. Haploids: Constraints and opportunities in plant breeding. Biotechnol. Adv. 2015;33:812–829. doi: 10.1016/j.biotechadv.2015.07.001. PubMed DOI
Lantos C., Purgel S., Ács K., Langó B., Bóna L., Boda K., Békés F., Pauk J. Utilization of in vitro anther culture in spelt wheat breeding. Plants. 2019;8:5–10. doi: 10.3390/plants8100436. PubMed DOI PMC
Lantos C., Pauk J. Anther culture as an effective tool in winter wheat (Triticum aestivum L.) breeding. Russ. J. Genet. 2016;52:794–801. doi: 10.1134/S102279541608007X. PubMed DOI
Shen Y., Pan G., Lubberstedt T. Haploid strategies for functional validation of plant genes. Trends Biotechnol. 2015;33:611–620. doi: 10.1016/j.tibtech.2015.07.005. PubMed DOI
Murovec J., Bohanec B. Haploids and doubled haploids in plant breeding. In: Abdurakhmonov I.Y., editor. Plant Breeding. IntechOpen; Rijeka, Croatia: 2012. DOI
Mohammadi P.P., Moieni A., Ebrahimi A., Javidfar F. Doubled haploid plants following colchicine treatment of microspore-derived embryos of oilseed rape (Brassica napus L.) Plant Cell. Tissue Organ Cult. 2012;108:251–256. doi: 10.1007/s11240-011-0036-2. DOI
Soriano M., Cistué L., Vallés M.P., Castillo A.M. Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.) Plant Cell. Tissue Organ Cult. 2007;91:225–234. doi: 10.1007/s11240-007-9288-2. DOI
Ohnoutkova L., Vlcko T., Mentewab A. Barley anther culture. In: Harwood W.A., editor. Barley: Methods and Protocols. Springer Science & Business Media; New York, NY, USA: 2019. pp. 37–52. DOI
Melander M., Kamnert I., Happstadius I., Liljeroth E., Bryngelsson T. Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and β-1,3-glucanase genes in a double-gene construct. Plant Cell Rep. 2006;25:942–952. doi: 10.1007/s00299-006-0153-2. PubMed DOI
Kim K.M., Baenziger P.S., Rybczynski J.J., Arumuganathan K. Characterization of ploidy levels of wheat microspore-derived plants using laser flow cytometry. Vitr. Cell. Dev. Biol.-Plant. 2003;39:663–668. doi: 10.1079/IVP2003464. DOI
Makowska K., Oleszczuk S., Zimny A., Czaplicki A., Zimny J. Androgenic capability among genotypes of winter and spring barley. Plant Breed. 2015;134:668–674. doi: 10.1111/pbr.12312. DOI
Sriskandarajah S., Sameri M., Lerceteau-Köhler E., Westerbergh A. Increased recovery of green doubled haploid plants from barley anther culture. Crop Sci. 2015;55:2806–2812. doi: 10.2135/cropsci2015.04.0245. DOI
Gajecka M., Marzec M., Chmielewska B., Jelonek J., Zbieszczyk J., Szarejko I. Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. Plant Sci. 2020;291:110321. doi: 10.1016/j.plantsci.2019.110321. PubMed DOI
Cejnar P., Ohnoutková L., Ripl J., Vlčko T., Kundu J.K. Two mutations in the truncated Rep gene RBR domain delayed the Wheat dwarf virus infection in transgenic barley plants. J. Integr. Agric. 2018;17:2492–2500. doi: 10.1016/S2095-3119(18)62000-3. DOI
Ochatt S.J., Patat-Ochatt E.M., Moessner A. Ploidy level determination within the context of in vitro breeding. Plant Cell. Tissue Organ Cult. 2011;104:329–341. doi: 10.1007/s11240-011-9918-6. DOI
Davies G.J., Sheikh M.A., Ratcliffe O.J., Coupland G., Furner I.J. Genetics of homology-dependent gene silencing in Arabidopsis; a role for methylation. Plant J. 1997;12:791–804. doi: 10.1046/j.1365-313X.1997.12040791.x. PubMed DOI
Elmayan T., Vaucheret H. Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J. 1996;9:787–797. doi: 10.1046/j.1365-313X.1996.9060787.x. DOI
Viktorova J., Klcova B., Rehorova K., Vlcko T., Stankova L., Jelenova N., Cejnar P., Kundu J.K., Ohnoutkova L., Macek T. Recombinant expression of osmotin in barley improves stress resistance and food safety during adverse growing conditions. PLoS ONE. 2019;14:1–16. doi: 10.1371/journal.pone.0212718. PubMed DOI PMC
Rehorova K., Viktorova J., Macuchova B., Vlcko T., Stankova L., Jelenova N., Ohnoutkova L., Macek T. Limen, non-toxic recombinant plant defensin and its effect against pathogenic yeast and fungi. J. Pharm. Pharmacol. 2018;6:1–11. doi: 10.17265/2328-2150/2018.11.001. DOI
Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19:1349. doi: 10.1093/nar/19.6.1349. PubMed DOI PMC
Dolezel J., Gohde W. Sex determination in dioecious plants melandrium album and m. rubrum using high-resolution flow cytometry. Cytometry. 1995;19:103–106. doi: 10.1002/cyto.990190203. PubMed DOI
Masek T., Vopalensky V., Suchomelova P., Pospisek M. Denaturing RNA electrophoresis in TAE agarose gels. Anal. Biochem. 2005;336:46–50. doi: 10.1016/j.ab.2004.09.010. PubMed DOI
Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI