Homozygous Transgenic Barley (Hordeum vulgare L.) Plants by Anther Culture

. 2020 Jul 20 ; 9 (7) : . [epub] 20200720

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32698526

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738 European Regional Development Fund

Production of homozygous lines derived from transgenic plants is one of the important steps for phenotyping and genotyping transgenic progeny. The selection of homozygous plants is a tedious process that can be significantly shortened by androgenesis, cultivation of anthers, or isolated microspores. Doubled haploid (DH) production achieves complete homozygosity in one generation. We obtained transgenic homozygous DH lines from six different transgenic events by using anther culture. Anthers were isolated from T0 transgenic primary regenerants and cultivated in vitro. The ploidy level was determined in green regenerants. At least half of the 2n green plants were transgenic, and their progeny were shown to carry the transgene. The process of dihaploidization did not affect the expression of the transgene. Embryo cultures were used to reduce the time to seed of the next generation. The application of these methods enables rapid evaluation of transgenic lines for gene function studies and trait evaluation.

Zobrazit více v PubMed

Hu H. In vitro induced haploids in wheat. In: Jain S.M., Sopory S.K., Veilleux R.E., editors. In Vitro Haploid Production in Higher Plants: Volume 4—Cereals. Springer; Dordrecht, The Netherlands: 1997. pp. 73–97. DOI

Devaux P., Pickering R. Haploids in the improvement of poaceae. In: Don Palmer C.E., Keller W.A., Kasha K.J., editors. Haploids in Crop Improvement II. Biotechnology in Agriculture and Forestry. Springer; Berlin/Heidelberg, Germany: 2005. pp. 215–242. DOI

Yan G., Liu H., Wang H., Lu Z., Wang Y., Mullan D., Hamblin J., Liu C. Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front. Plant Sci. 2017;8:1786. doi: 10.3389/fpls.2017.01786. PubMed DOI PMC

Mullerova E., Novotny J., Vagera J., Harwood W.A., Ohnoutkova L. Induction of androgenesis in transgenic barley plants; Proceedings of the Induction of Androgenesis in Transgenic Barley Plants; Bled, Slovenia. 1–5 July 2000; pp. 29–32.

Coronado M.J., Hensel G., Broeders S., Otto I., Kumlehn J. Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination. Acta Physiol. Plant. 2005;27:591–599. doi: 10.1007/s11738-005-0063-x. DOI

Kapusi E., Hensel G., Coronado M.J., Broeders S., Marthe C., Otto I., Kumlehn J. The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants. Plant Mol. Biol. 2013;81:149–160. doi: 10.1007/s11103-012-9988-9. PubMed DOI PMC

Kumlehn J., Serazetdinova L., Hensel G., Becker D., Loerz H. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol. J. 2006;4:251–261. doi: 10.1111/j.1467-7652.2005.00178.x. PubMed DOI

Holme I.B., Brinch-Pedersen H., Lange M., Holm P.B. Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep. 2008;27:1833–1840. doi: 10.1007/s00299-008-0605-y. PubMed DOI

Brew-Appiah R.A.T., Ankrah N., Liu W., Konzak C.F., Von Wettstein D., Rustgi S. Generation of doubled haploid transgenic wheat lines by microspore transformation. PLoS ONE. 2013;8:e80155. doi: 10.1371/journal.pone.0080155. PubMed DOI PMC

Bhowmik P., Ellison E., Polley B., Bollina V., Kulkarni M., Ghanbarnia K., Song H., Gao C., Voytas D.F., Kagale S. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci. Rep. 2018;8:6502. doi: 10.1038/s41598-018-24690-8. PubMed DOI PMC

Cegielska-Taras T., Pniewski T., Szała L. Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J. Appl. Genet. 2008;49:343–347. doi: 10.1007/BF03195632. PubMed DOI

Chen C., Xiao H., Zhang W., Wang A., Xia Z., Li X., Zhai W., Cheng Z., Zhu L. Adapting rice anther culture to gene transformation and RNA interference. Sci. China Ser. C Life Sci. 2006;49:414–428. doi: 10.1007/s11427-006-2013-2. PubMed DOI

Dwivedi S.L., Britt A.B., Tripathi L., Sharma S., Upadhyaya H.D., Ortiz R. Haploids: Constraints and opportunities in plant breeding. Biotechnol. Adv. 2015;33:812–829. doi: 10.1016/j.biotechadv.2015.07.001. PubMed DOI

Lantos C., Purgel S., Ács K., Langó B., Bóna L., Boda K., Békés F., Pauk J. Utilization of in vitro anther culture in spelt wheat breeding. Plants. 2019;8:5–10. doi: 10.3390/plants8100436. PubMed DOI PMC

Lantos C., Pauk J. Anther culture as an effective tool in winter wheat (Triticum aestivum L.) breeding. Russ. J. Genet. 2016;52:794–801. doi: 10.1134/S102279541608007X. PubMed DOI

Shen Y., Pan G., Lubberstedt T. Haploid strategies for functional validation of plant genes. Trends Biotechnol. 2015;33:611–620. doi: 10.1016/j.tibtech.2015.07.005. PubMed DOI

Murovec J., Bohanec B. Haploids and doubled haploids in plant breeding. In: Abdurakhmonov I.Y., editor. Plant Breeding. IntechOpen; Rijeka, Croatia: 2012. DOI

Mohammadi P.P., Moieni A., Ebrahimi A., Javidfar F. Doubled haploid plants following colchicine treatment of microspore-derived embryos of oilseed rape (Brassica napus L.) Plant Cell. Tissue Organ Cult. 2012;108:251–256. doi: 10.1007/s11240-011-0036-2. DOI

Soriano M., Cistué L., Vallés M.P., Castillo A.M. Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.) Plant Cell. Tissue Organ Cult. 2007;91:225–234. doi: 10.1007/s11240-007-9288-2. DOI

Ohnoutkova L., Vlcko T., Mentewab A. Barley anther culture. In: Harwood W.A., editor. Barley: Methods and Protocols. Springer Science & Business Media; New York, NY, USA: 2019. pp. 37–52. DOI

Melander M., Kamnert I., Happstadius I., Liljeroth E., Bryngelsson T. Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and β-1,3-glucanase genes in a double-gene construct. Plant Cell Rep. 2006;25:942–952. doi: 10.1007/s00299-006-0153-2. PubMed DOI

Kim K.M., Baenziger P.S., Rybczynski J.J., Arumuganathan K. Characterization of ploidy levels of wheat microspore-derived plants using laser flow cytometry. Vitr. Cell. Dev. Biol.-Plant. 2003;39:663–668. doi: 10.1079/IVP2003464. DOI

Makowska K., Oleszczuk S., Zimny A., Czaplicki A., Zimny J. Androgenic capability among genotypes of winter and spring barley. Plant Breed. 2015;134:668–674. doi: 10.1111/pbr.12312. DOI

Sriskandarajah S., Sameri M., Lerceteau-Köhler E., Westerbergh A. Increased recovery of green doubled haploid plants from barley anther culture. Crop Sci. 2015;55:2806–2812. doi: 10.2135/cropsci2015.04.0245. DOI

Gajecka M., Marzec M., Chmielewska B., Jelonek J., Zbieszczyk J., Szarejko I. Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. Plant Sci. 2020;291:110321. doi: 10.1016/j.plantsci.2019.110321. PubMed DOI

Cejnar P., Ohnoutková L., Ripl J., Vlčko T., Kundu J.K. Two mutations in the truncated Rep gene RBR domain delayed the Wheat dwarf virus infection in transgenic barley plants. J. Integr. Agric. 2018;17:2492–2500. doi: 10.1016/S2095-3119(18)62000-3. DOI

Ochatt S.J., Patat-Ochatt E.M., Moessner A. Ploidy level determination within the context of in vitro breeding. Plant Cell. Tissue Organ Cult. 2011;104:329–341. doi: 10.1007/s11240-011-9918-6. DOI

Davies G.J., Sheikh M.A., Ratcliffe O.J., Coupland G., Furner I.J. Genetics of homology-dependent gene silencing in Arabidopsis; a role for methylation. Plant J. 1997;12:791–804. doi: 10.1046/j.1365-313X.1997.12040791.x. PubMed DOI

Elmayan T., Vaucheret H. Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J. 1996;9:787–797. doi: 10.1046/j.1365-313X.1996.9060787.x. DOI

Viktorova J., Klcova B., Rehorova K., Vlcko T., Stankova L., Jelenova N., Cejnar P., Kundu J.K., Ohnoutkova L., Macek T. Recombinant expression of osmotin in barley improves stress resistance and food safety during adverse growing conditions. PLoS ONE. 2019;14:1–16. doi: 10.1371/journal.pone.0212718. PubMed DOI PMC

Rehorova K., Viktorova J., Macuchova B., Vlcko T., Stankova L., Jelenova N., Ohnoutkova L., Macek T. Limen, non-toxic recombinant plant defensin and its effect against pathogenic yeast and fungi. J. Pharm. Pharmacol. 2018;6:1–11. doi: 10.17265/2328-2150/2018.11.001. DOI

Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19:1349. doi: 10.1093/nar/19.6.1349. PubMed DOI PMC

Dolezel J., Gohde W. Sex determination in dioecious plants melandrium album and m. rubrum using high-resolution flow cytometry. Cytometry. 1995;19:103–106. doi: 10.1002/cyto.990190203. PubMed DOI

Masek T., Vopalensky V., Suchomelova P., Pospisek M. Denaturing RNA electrophoresis in TAE agarose gels. Anal. Biochem. 2005;336:46–50. doi: 10.1016/j.ab.2004.09.010. PubMed DOI

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...