Transgenic barley over-expressing Aspergillus niger phytase phyA in field trials
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40948431
PubMed Central
PMC12439572
DOI
10.1080/21645698.2025.2559488
Knihovny.cz E-zdroje
- Klíčová slova
- Transgenic barley, androgenesis, field trials, hybridization, phytase,
- MeSH
- 6-fytasa * genetika metabolismus MeSH
- Aspergillus niger * enzymologie genetika MeSH
- fosfáty metabolismus MeSH
- fungální proteiny * genetika metabolismus MeSH
- geneticky modifikované rostliny * genetika metabolismus MeSH
- ječmen (rod) * genetika enzymologie metabolismus MeSH
- kyselina fytová metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 6-fytasa * MeSH
- fosfáty MeSH
- fungální proteiny * MeSH
- kyselina fytová MeSH
Phytic acid is the main storage of phosphate in grains of staple crops. As phytic acid is hardly digestible for non-ruminants microbial phytases are used to supplement animal feed to enhance phosphate digestibility. A fungal phytase gene was introduced into barley with the aim of enhancing phosphate digestibility. Transgenic homozygous barley over-expressing fungal phytase phyA showed a 3.3fold increase in mature grain phytase activity. Field trials at two locations in the Czech Republic were conducted in a five-year experiment to test transgene stability and activity under field conditions. Increased phytase activity gradually decreased over the generations showing the most significant drop in the initial years of field trials. Molecular analysis revealed methylation in the coding sequence of the phyA transgene, suggesting transcription gene silencing. On the other hand, herbicide resistance used for selection of transgenic plants was functional over all generations. The feasibility of crossing the transgene into the feeding cultivar Azit was demonstrated with subsequent stabilization of hybrid progeny through androgenesis. Our results indicate that the Azit genetic background tended to reduce phytase activity in mature grains of hybrids. Grain-specific over-expression of fungal phytase driven by an amylase promoter improved phosphate levels during germination. Unfortunately, a malting experiment revealed that phytase over-expression did not significantly improve malting parameters. In fact, the higher nitrogen content in unmalted grain negatively affected the quality of the malt produced from them.
Department of Chemical Biology Faculty of Science Palacký University Olomouc Czech Republic
Department of Crop Genetics John Innes Centre Norwich Research Park Norwich UK
Laboratory of Growth Regulators Faculty of Science Palacký University Olomouc Czech Republic
Research Institute of Brewing and Malting Brno Czech Republic
Zobrazit více v PubMed
Chen M, Graedel TE.. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob Environ Chang. 2016;36:139–52. doi: 10.1016/j.gloenvcha.2015.12.005. DOI
Lott JN, Greenwood JS, Vollmer CM, Buttrose MS. Energy-dispersive x-ray analysis of phosphorus, potassium, magnesium, and calcium in globoid crystals in protein bodies from different regions of Cucurbita maxima embryos. Plant Physiol. 1978;61(6):984–88. doi: 10.1104/pp.61.6.984. PubMed DOI PMC
Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS. Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell. 2011;23(2):769–84. doi: 10.1105/tpc.110.082156. PubMed DOI PMC
Dionisio G, Madsen CK, Holm PB, Welinder KG, Jørgensen M, Stoger E, Arcalis E, Brinch-Pedersen H. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiol. 2011;156(3):1087–100. doi: 10.1104/pp.110.164756. PubMed DOI PMC
Hatzack F, Hübel F, Zhang W, Hansen PE, Rasmussen SK. Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR. Biochem J. 2001;354(2):473–80. doi: 10.1042/bj3540473. PubMed DOI PMC
Azeke MA, Egielewa SJ, Eigbogbo MU, Ihimire IG. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). J Food Sci Technol. 2011;48(6):724–29. doi: 10.1007/s13197-010-0186-y. PubMed DOI PMC
Greiner R, Konietzny U, Jany K-D. Purification and properties of a phytase from rye. J Food Biochem. 1998;22(2):143–61. doi: 10.1111/j.1745-4514.1998.tb00236.x. DOI
Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso I, Fileppi M, Bollini R, Nielsen E. Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet. 2009;118(6):1211–21. doi: 10.1007/s00122-009-0975-8. PubMed DOI
Frank T, Habernegg R, Yuan FJ, Shu Q-Y, Engel K-H. Assessment of the contents of phytic acid and divalent cations in low phytic acid (LPA) mutants of rice and soybean. J Food Compos Anal. 2009;22(4):278–84. doi: 10.1016/j.jfca.2008.11.022. DOI
Guttieri M, Bowen D, Dorsch JA, Raboy V, Souza E. Identification and characterization of a low phytic acid wheat. Crop Sci. 2004;44(2):418–24. doi: 10.2135/cropsci2004.1505. DOI
Kishor DS, Lee C, Lee D, Venkatesh J, Seo J, Chin JH, Jin Z, Hong S-K, Ham J-K, Koh HJ, et al. Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.). PLOS ONE. 2019;14(3):1–20. doi: 10.1371/journal.pone.0209636. PubMed DOI PMC
Larson SR, Young KA, Cook A, Blake TK, Raboy V. Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor Appl Genet. 1998;97(1–2):141–46. doi: 10.1007/s001220050878. DOI
Yuan F-J, Zhao H-J, Ren X-L, Zhu S-L, Fu X-J, Shu Q-Y. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor Appl Genet. 2007;115(7):945–57. doi: 10.1007/s00122-007-0621-2. PubMed DOI
Holme IB, Wendt T, Gil-Humanes J, Deleuran LC, Starker CG, Voytas DF, Brinch-Pedersen H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol Biol. 2017;95(1–2):111–21. doi: 10.1007/s11103-017-0640-6. PubMed DOI
Holme IB, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen CK, Vincze E, Holm PB. Cisgenic barley with improved phytase activity. Plant Biotechnol J. 2012;10(2):237–47. doi: 10.1111/j.1467-7652.2011.00660.x. PubMed DOI
Abid N, Khatoon A, Maqbool A, Irfan M, Bashir A, Asif I, Shahid M, Saeed A, Brinch-Pedersen H, Malik KA. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Transgenic Res. 2017;26(1):109–22. doi: 10.1007/s11248-016-9983-z. PubMed DOI
Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB. Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed. 2000;6(2):195–206. doi: 10.1023/A:1009690730620. DOI
Bilyeu KD, Zeng P, Coello P, Zhang ZJ, Krishnan HB, Bailey A, Beuselinck PR, Polacco JC. Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase. Plant Physiol. 2008;146(2):468–77. doi: 10.1104/pp.107.113480. PubMed DOI PMC
Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF, Pen J. Stable expression of phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mol Breed. 2002;10(1–2):31–44. doi: 10.1023/A:1020326219687. DOI
Wang Y, Ye X, Ding G, Xu F. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. PLOS ONE. 2013;8(4):2–10. doi: 10.1371/journal.pone.0060801. PubMed DOI PMC
Lucca P, Hurrell R, Potrykus I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet. 2001;102(2–3):392–97. doi: 10.1007/s001220051659. DOI
Zuo-Ping W, Li-Hua D, Lü-Shui W, Deng X-Y, Fu X-Q, Xin Y-Y, Xiao G-Y. Transgenic rice expressing a novel phytase-lactoferricin fusion gene to improve phosphorus availability and antibacterial activity. J Integr Agric. 2017;16(4):774–88. doi: 10.1016/S2095-3119(16)61468-5. DOI
Duliński R, Zdaniewicz M, Pater A, Poniewska D, Żyła K. The impact of phytases on the release of bioactive inositols, the profile of inositol phosphates, and the release of selected minerals in the technology of buckwheat beer production. Biomolecules. 2020;10(2):166. doi: 10.3390/biom10020166. PubMed DOI PMC
Forster BP. Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica. 2001;120(3):317–28. doi: 10.1023/A:1017592618298. DOI
Russell J, Fuller J, Young G, Thomas B, Macaulay M, Waugh R, Powell W, Taramino G. Discriminating between barley genotypes using microsatellite markers. Genome. 1997;40(4):442–50. doi: 10.1139/g97-059. PubMed DOI
Schreiber M, Mascher M, Wright J, Padmarasu S, Himmelbach A, Heavens D, Milne L, Clavijo BJ, Stein N, Waugh R. A genome assembly of the barley ‘transformation reference’ cultivar Golden Promise. G3 Genes Genomes Genet. 2020;10(6):1823–27. doi: 10.1534/g3.119.401010. PubMed DOI PMC
Harwood WA, Ross SM, Cilento P, Snape JW. The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica. 2000;111(1):67–76. doi: 10.1023/A:1003700300235. DOI
Mullerova E, Novotny J, Vagera J, Harwood WA. Induction of androgenesis in transgenic barley plants. Luxembourg: Office for Official Publications of the European Communities; 2000, ISBN: 92-894-0225-3.
Lonsdale DM, Moisan LJ, Harvey AJ. pfc1 to pfc7: a novel family of combinatorial cloning vectors. Plant Mol Biol Report. 1995;13(4):343–45. doi: 10.1007/BF02669189. DOI
Vagera J, Ohnoutkova L. In vitro induction of androgenesis in wheat and barley. Rostl výroba. 1993;39:97–114.
Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19(6):1349. doi: 10.1093/nar/19.6.1349. PubMed DOI PMC
Ohnoutkova L, Vlcko T. Homozygous transgenic barley (Hordeum vulgare L.) plants by anther culture. PLANTS-BASEL. 2020;9(7):918. doi: 10.3390/plants9070918. PubMed DOI PMC
Dolezel J, Gohde W. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry. 1995;19(2):103–06. doi: 10.1002/cyto.990190203. PubMed DOI
Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA. High-throughput Agrobacterium-mediated barley transformation. Plant Methods. 2008;4(1):1–12. doi: 10.1186/1746-4811-4-22. PubMed DOI PMC
Kanukova S, Mrkvova M, Mihalik D, Kraic J. Procedures for DNA extraction from opium poppy (Papaver somniferum L.) and poppy seed-containing products. Foods. 2020;9(10):1429. doi: 10.3390/foods9101429. PubMed DOI PMC
Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427–31. doi: 10.1093/bioinformatics/18.11.1427. PubMed DOI
Chen PS, Toribara TY, Warner H. Microdetermination of phosphorus. Anal Chem. 1956;28(11):1756–58. doi: 10.1021/ac60119a033. DOI
Fritz J (ed). Raw materials: barley ; adjuncts ; malt ; hops and hop products ; collection of brewing analysis methods of the mitteleuropäische brautechnische analysenkommission (MEBAK), 1st ed. Freising: Mitteleuropäische Brautechnische Analysenkommission (MEBAK); 2011.
Methner F-J (ed). Raw Materials: Adjuncts, Barley, Malt, Hops and Hop Products. 2nd ed. Freising: Mitteleuropäische Brautechnische Analysenkommission (MEBAK); 2018.
Fachverlag, HC (ed). Analytica EBC: The European reference analytical methods for breweries. 5th ed. Nürnberg; 2010. p. 574.
Psota V, Kosař K. Ukazatel sladovnické jakosti. Kvas Prum. 2002;48(6):142–48. doi: 10.18832/kp2002011. DOI
Psota V, Svorad M, Musilová M, Boško R. Barley varieties registered in the Czech Republic after the harvest 2022. Kvas Prum. 2023;69(3):740–46. doi: 10.18832/kp2023.69.740. DOI
McCleary BV, McNally M, Monaghan D, Mugford DC, Black C, Broadbent R, Chin M, Cormack M, Fox R, Gaines C, et al. Measurement of alpha-amylase activity in white wheat flour, milled malt, and microbial enzyme preparations, using the ceralpha assay: collaborative study. J AOAC Int. 2002;85(5):1096–102. doi: 10.1093/jaoac/85.5.1096. PubMed DOI
Jiang S, Zhao Z, Li J, He J, Xue Y, Xu W, Zhang L, Chen F. Damage of maize borer and maize weevil on the yield of transgenic phytase maize. Agron J. 2015;107(1):25–32. doi: 10.2134/agronj14.0366. DOI
Wang M, Guan X. The effects of phytase transgenic maize on the community components and diversity of arthropods. J Asia Pac Entomol. 2020;23(4):1228–34. doi: 10.1016/j.aspen.2020.09.001. DOI
Holme IB, Madsen CK, Wendt T, Brinch-Pedersen H. Horizontal stacking of PAPhy_a cisgenes in barley is a potent strategy for increasing mature grain phytase activity. Front Plant Sci. 2020;11:1–9. doi: 10.3389/fpls.2020.592139. PubMed DOI PMC
Madsen CK, Dionisio G, Holme IB, Holm PB, Brinch-Pedersen H. High mature grain phytase activity in the triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene. J Exp Bot. 2013;64(11):3111–23. doi: 10.1093/jxb/ert116. PubMed DOI PMC
Dai F, Qiu L, Xu Y, Cai S, Qiu B, Zhang G. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys. J Agric Food Chem. 2010;58(22):11821–24. doi: 10.1021/jf1029948. PubMed DOI
Bregitzer P, Brown RH. Long-term assessment of transgene behavior in barley: Ds-mediated delivery of bar results in robust, stable, and heritable expression. Vitr Cell Dev Biol - Plant. 2013;49(3):231–39. doi: 10.1007/s11627-013-9507-y. DOI
Choi HW, Yu XH, Lemaux PG, Cho MJ. Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants. Plant Cell Rep. 2009;28(8):1265–72. doi: 10.1007/s00299-009-0726-y. PubMed DOI PMC
Centeno C, Viveros A, Brenes A, Canales R, Lozano A, de la Cuadra C. Effect of several germination conditions on total P, phytate P, phytase, and acid phosphatase activities and inositol phosphate esters in rye and barley. J Agric Food Chem. 2001;49(7):3208–15. doi: 10.1021/jf010023c. PubMed DOI
Crans DC, Mikus M, Friehauf RB. Phytate metabolism in bean seedlings during post-germinative growth. J Plant Physiol. 1995;145(1–2):101–07. doi: 10.1016/S0176-1617(11)81854-7. DOI
Greiner R, Jany K-D, Larsson Alminger M. Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (phytases) from barley (Hordeum vulgare). J Cereal Sci. 2000;31(2):127–39. doi: 10.1006/jcrs.1999.0254. DOI
Sung HG, Shin HT, Ha JK, Lai H-L, Cheng K-J, Lee JH. Effect of germination temperature on characteristics of phytase production from barley. Bioresour Technol. 2005;96(11):1297–303. doi: 10.1016/j.biortech.2004.10.010. PubMed DOI
Vats P, Bhushan B, Banerjee UC. Studies on the dephosphorylation of phytic acid in livestock feed using phytase from Aspergillus niger van Teighem. Bioresour Technol. 2009;100(1):287–91. doi: 10.1016/j.biortech.2008.06.021. PubMed DOI
Ritchie S, Swanson SJ, Gilroy S. Physiology of the aleurone layer and starchy endosperm during grain development and early seedling growth: new insights from cell and molecular biology. Seed Sci Res. 2000;10(3):193–212. doi: 10.1017/S0960258500000234. DOI
Madsen CK, Brearley CA, Harholt J, Brinch-Pedersen H. Optimized barley phytase gene expression by focused find-it screening for mutations in cis-acting regulatory elements. Front Plant Sci. 2024;15:1–10. doi: 10.3389/fpls.2024.1372049. PubMed DOI PMC
Rajeevkumar S, Anunanthini P, Sathishkumar R. Epigenetic silencing in transgenic plants. Front Plant Sci. 2015;6:693. doi: 10.3389/fpls.2015.00693. PubMed DOI PMC
Meng L, Ziv M, Lemaux PG. Nature of stress and transgene locus influences transgene expression stability in barley. Plant Mol Biol. 2006;62(1–2):15–28. doi: 10.1007/s11103-006-9000-7. PubMed DOI
Fan Y, Sun C, Yan K, Li P, Hein I, Gilroy EM, Kear P, Bi Z, Yao P, Liu Z, et al. Recent advances in studies of genomic DNA methylation and its involvement in regulating drought stress response in crops. Plants. 2024;13(10):1400. doi: 10.3390/plants13101400. PubMed DOI PMC
Cho MJ, Choi HW, Buchanan BB, Lemaux PG. Inheritance of tissue-specific expression of barley hordein promoter-uidA fusions in transgenic barley plants. Theor Appl Genet. 1999;98(8):1253–62. doi: 10.1007/s001220051191. DOI
Muyle AM, Seymour DK, Lv Y, Huettel B, Gaut BS. Gene body methylation in plants: mechanisms, functions, and important implications for understanding evolutionary processes. Genome Biol Evol. 2022;14(4):1–18. doi: 10.1093/gbe/evac038. PubMed DOI PMC
Edney MJ, Rossnagel BG, Raboy V. Effect of low-phytate barley on malt quality, including mineral loss, during fermentation. J Am Soc Brew Chem. 2007;65(2):81–85. doi: 10.1094/ASBCJ-2007-0305-01. DOI
Qiu R, Lu J. Improved hydrolase activity in barley and reduced malting time by adding phytase as an activator during malting steeping. Biotechnol Lett. 2017;39(12):1889–94. doi: 10.1007/s10529-017-2394-2. PubMed DOI
Ellis RP, Swanston JS, Bruce FM. A comparison of some rapid screening tests for malting quality. J Inst Brew. 1979;85(5):282–85. doi: 10.1002/j.2050-0416.1979.tb03924.x. DOI
Herb D, Filichkin T, Fisk S, Helgerson L, Hayes P, Meints B, Jennings R, Monsour R, Tynan S, Vinkemeier K, et al. Effects of barley (Hordeum vulgare L.) variety and growing environment on beer flavor. J Am Soc Brew Chem. 2017;75(4):345–53. doi: 10.1094/ASBCJ-2017-4860-01. DOI
Bahmani M, Juhász A, Broadbent J, Bose U, Nye-Wood MG, Edwards IB, Colgrave ML. Proteome phenotypes discriminate the growing location and malting traits in field-grown barley. J Agric Food Chem. 2022;70(34):10680–91. doi: 10.1021/acs.jafc.2c03816. PubMed DOI PMC