Efficient Confirmation of Plant Viral Proteins and Identification of Specific Viral Strains by nanoLC-ESI-Q-TOF Using Single-Leaf-Tissue Samples

. 2020 Nov 19 ; 9 (11) : . [epub] 20201119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33228257

Grantová podpora
MZE-RO0418 Ministerstvo Zemědělství
LTAIN19007 Ministry of Education, Youth and Sports of the Czech Republic
APVV-18-0005 Agentúra na Podporu Výskumu a Vývoja

Plant viruses are important pathogens that cause significant crop losses. A plant protein extraction protocol that combines crushing the tissue by a pestle in liquid nitrogen with subsequent crushing by a roller-ball crusher in urea solution, followed by RuBisCO depletion, reduction, alkylation, protein digestion, and ZipTip purification allowed us to substantially simplify the sample preparation by removing any other precipitation steps and to detect viral proteins from samples, even with less than 0.2 g of leaf tissue, by a medium resolution nanoLC-ESI-Q-TOF. The presence of capsid proteins or polyproteins of fourteen important viruses from seven different families (Geminiviridae, Luteoviridae, Bromoviridae, Caulimoviridae, Virgaviridae, Potyviridae, and Secoviridae) isolated from ten different economically important plant hosts was confirmed through many identified pathogen-specific peptides from a protein database of host proteins and potential pathogen proteins assembled separately for each host and based on existing online plant virus pathogen databases. The presented extraction protocol, combined with a medium resolution LC-MS/MS, represents a cost-efficient virus protein confirmation method that proved to be effective at identifying virus strains (as demonstrated for PPV, WDV) and distinct disease species of BYDV, as well as putative new viral protein sequences from single-plant-leaf tissue samples. Data are available via ProteomeXchange with identifier PXD022456.

Zobrazit více v PubMed

Vanderschuren H., Stupak M., Futterer J., Gruissem W., Zhang P. Engineering resistance to geminiviruses—Review and perspectives. Plant. Biotechnol. J. 2007;5:207–220. doi: 10.1111/j.1467-7652.2006.00217.x. PubMed DOI

Oerke E.C. Crop losses to pests. J. Agric. Sci. 2006;144:31–43. doi: 10.1017/S0021859605005708. DOI

Savary S., Ficke A., Aubertot J.N., Hollier C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012;4:519–537. doi: 10.1007/s12571-012-0200-5. DOI

Levy S.E., Myers R.M. Advancements in Next-Generation Sequencing. Annu. Rev. Genom. Hum. G. 2016;17:95–115. doi: 10.1146/annurev-genom-083115-022413. PubMed DOI

Stark R., Grzelak M., Hadfield J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019;20:631–656. doi: 10.1038/s41576-019-0150-2. PubMed DOI

Kuckova S., Cejnar P., Santrucek J., Hynek R. Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques. Phys. Sci. Rev. 2018;4 doi: 10.1515/psr-2018-0011. DOI

Chen Y., Vu J., Thompson M.G., Sharpless W.A., Chan L.J.G., Gin J.W., Keasling J.D., Adams P.D., Petzold C.J. A rapid methods development workflow for high-throughput quantitative proteomic applications. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0211582. PubMed DOI PMC

Wenger C.D., Coon J.J. A Proteomics Search Algorithm Specifically Designed for High-Resolution Tandem Mass Spectra. J. Proteome Res. 2013;12:1377–1386. doi: 10.1021/pr301024c. PubMed DOI PMC

Tu C.J., Sheng Q.H., Li J., Ma D.J., Shen X.M., Wang X., Shyr Y., Yi Z.P., Qu J. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data. J. Proteome Res. 2015;14:4662–4673. doi: 10.1021/acs.jproteome.5b00536. PubMed DOI PMC

Beck S., Michalski A., Raether O., Lubeck M., Kaspar S., Goedecke N., Baessmann C., Hornburg D., Meier F., Paron I., et al. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics. Mol. Cell Proteomics. 2015;14:2014–2029. doi: 10.1074/mcp.M114.047407. PubMed DOI PMC

Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI

Thomas J.J., Bakhtiar R., Siuzdak G. Mass spectrometry in viral proteomics. Acc. Chem. Res. 2000;33:179–187. PubMed

Trauger S.A., Junker T., Siuzdak G. Investigating viral proteins and intact viruses with mass spectrometry. Top. Curr. Chem. 2003;225:265–282. doi: 10.1007/b10476. DOI

Blouin A.G., Greenwood D.R., Chavan R.R., Pearson M.N., Clover G.R.G., MacDiarmid R.M., Cohen D. A generic method to identify plant viruses by high-resolution tandem mass spectrometry of their coat proteins. J. Virol. Methods. 2010;163:49–56. doi: 10.1016/j.jviromet.2009.08.009. PubMed DOI

Cooper B., Eckert D., Andon N.L., Yates J.R., Haynes P.A. Investigative proteomics: Identification of an unknown plant virus from infected plants using mass spectrometry. J. Am. Soc. Mass Spectr. 2003;14:736–741. doi: 10.1016/S1044-0305(03)00125-9. PubMed DOI

Di Carli M., Benvenuto E., Donini M. Recent Insights into Plant-Virus Interactions through Proteomic Analysis. J. Proteome Res. 2012;11:4765–4780. doi: 10.1021/pr300494e. PubMed DOI

Fang X.P., Chen J.P., Dai L.Y., Ma H.S., Zhang H.M., Yang J., Wang F., Yan C.Q. Proteomic dissection of plant responses to various pathogens. Proteomics. 2015;15:1525–1543. doi: 10.1002/pmic.201400384. PubMed DOI

Jorrin-Novo J.V., Pascual J., Sanchez-Lucas R., Romero-Rodriguez M.C., Rodriguez-Ortega M.J., Lenz C., Valledor L. Fourteen years of plant proteomics reflected in Proteomics: Moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics. 2015;15:1089–1112. doi: 10.1002/pmic.201400349. PubMed DOI

Crowell A.M.J., Wall M.J., Doucette A.A. Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta. 2013;796:48–54. doi: 10.1016/j.aca.2013.08.005. PubMed DOI

Feist P., Hummon A.B. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples. Int J. Mol. Sci. 2015;16:3537–3563. doi: 10.3390/ijms16023537. PubMed DOI PMC

Bodzon-Kulakowska A., Bierczynska-Krzysik A., Dylag T., Drabik A., Suder P., Noga M., Jarzebinska J., Silberring J. Methods for samples preparation in proteomic research. J. Chromatogr. B. 2007;849:1–31. doi: 10.1016/j.jchromb.2006.10.040. PubMed DOI

Burgess R.R. Protein Precipitation Techniques. Methods Enzymol. 2009;463:331–342. doi: 10.1016/S0076-6879(09)63020-2. PubMed DOI

Gundry R.L., White M.Y., Murray C.I., Kane L.A., Fu Q., Stanley B.A., Van Eyk J.E. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr. Protoc. Mol. Biol. 2009;90:10–25. doi: 10.1002/0471142727.mb1025s88. PubMed DOI PMC

Suttapitugsakul S., Xiao H.P., Smeekens J., Wu R.H. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS- based proteomics. Mol. Biosyst. 2017;13:2574–2582. doi: 10.1039/C7MB00393E. PubMed DOI PMC

Muller T., Winter D. Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents. Mol. Cell Proteomics. 2017;16:1173–1187. doi: 10.1074/mcp.M116.064048. PubMed DOI PMC

Sun S.S., Zhou J.Y., Yang W.M., Zhang H. Inhibition of protein carbamylation in urea solution using ammonium-containing buffers. Anal. Biochem. 2014;446:76–81. doi: 10.1016/j.ab.2013.10.024. PubMed DOI PMC

Gupta R., Wang Y.M., Agrawal G.K., Rakwal R., Jo I.H., Bang K.H., Kim S.T. Time to dig deep into the plant proteome: A hunt for low-abundance proteins. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00022. PubMed DOI PMC

Kim Y.J., Lee H.M., Wang Y.M., Wu J., Kim S.G., Kang K.Y., Park K.H., Kim Y.C., Choi I.S., Agrawal G.K., et al. Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method. Proteomics. 2013;13:2176–2179. doi: 10.1002/pmic.201200555. PubMed DOI

Krishnan H.B., Natarajan S.S. A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins. Phytochemistry. 2009;70:1958–1964. doi: 10.1016/j.phytochem.2009.08.020. PubMed DOI

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Nesvizhskii A.I., Keller A., Kolker E., Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003;75:4646–4658. doi: 10.1021/ac0341261. PubMed DOI

Burger T. Gentle Introduction to the Statistical Foundations of False Discovery Rate in Quantitative Proteomics. J. Proteome Res. 2018;17:12–22. doi: 10.1021/acs.jproteome.7b00170. PubMed DOI

Nesvizhskii A.I. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics. 2010;73:2092–2123. doi: 10.1016/j.jprot.2010.08.009. PubMed DOI PMC

Plant Viruses Online Plant Viruses Online: Descriptions and Lists from the VIDE Database. [(accessed on 3 January 2020)]; Version: 20th August 1996. Available online: http://bio-mirror.im.ac.cn/mirrors/pvo/vide/refs.htm.

Adams M.J., Antoniw J.F. DPVweb: A comprehensive database of plant and fungal virus genes and genomes. Nucleic Acids Res. 2006;34:D382–D385. doi: 10.1093/nar/gkj023. PubMed DOI PMC

Descriptions of Plant Viruses. [(accessed on 3 January 2020)]; Available online: http://www.dpvweb.net/dpv/dpvnameidx.php.

Nesvizhskii A.I. Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol. Biol. 2007;367:87–119. doi: 10.1385/1-59745-275-0:87. PubMed DOI

Tabb D.L., Friedman D.B., Ham A.J.L. Verification of automated peptide identifications from proteomic tandem mass spectra. Nat. Protoc. 2006;1:2213–2222. doi: 10.1038/nprot.2006.330. PubMed DOI PMC

Kourelis J., Kaschani F., Grosse-Holz F.M., Homma F., Kaiser M., van der Hoorn R.A.L. A homology-guided, genome-based proteome for improved proteomics in the alloploid Nicotiana benthamiana. Bmc Genomics. 2019;20 doi: 10.1186/s12864-019-6058-6. PubMed DOI PMC

Kundu J.K., Jarosova J., Gadiou S., Cervena G. Discrimination of Three BYDV Species by One-step RT-PCR-RFLP and Sequence Based Methods in Cereal Plants from the Czech Republic. Cereal Res. Commun. 2009;37:541–550. doi: 10.1556/CRC.37.2009.4.7. DOI

Mann M., Ong S.E., Gronborg M., Steen H., Jensen O.N., Pandey A. Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends Biotechnol. 2002;20:261–268. doi: 10.1016/S0167-7799(02)01944-3. PubMed DOI

Gessulat S., Schmidt T., Zolg D.P., Samaras P., Schnatbaum K., Zerweck J., Knaute T., Rechenberger J., Delanghe B., Huhmer A., et al. Prosit: Proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods. 2019;16:509. doi: 10.1038/s41592-019-0426-7. PubMed DOI

Tiwary S., Levy R., Gutenbrunner P., Soto F.S., Palaniappan K.K., Deming L., Berndl M., Brant A., Cimermancic P., Cox J. High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis. Nat. Methods. 2019;16:519. doi: 10.1038/s41592-019-0427-6. PubMed DOI

CABI (CAB International) Invasive Species Compendium. [(accessed on 1 July 2020)]; Available online: https://www.cabi.org/isc.

APS (The American Phytopathological Society) Common Names of Plant Diseases. [(accessed on 1 July 2020)]; Available online: https://www.apsnet.org/edcenter/resources/commonnames/Pages/default.aspx.

ICTV (International Committee on Taxonomy of Viruses) Virus Taxonomy: 2019 Release. [(accessed on 1 July 2020)]; Available online: https://talk.ictvonline.org/taxonomy/

Vizcaino J.A., Deutsch E.W., Wang R., Csordas A., Reisinger F., Rios D., Dianes J.A., Sun Z., Farrah T., Bandeira N., et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014;32:223–226. doi: 10.1038/nbt.2839. PubMed DOI PMC

Elias J.E., Gygi S.R. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. Methods Mol. Biol. 2010;604:55–71. doi: 10.1007/978-1-60761-444-9_5. PubMed DOI PMC

Bateman A., Martin M.J., Orchard S., Magrane M., Alpi E., Bely B., Bingley M., Britto R., Bursteinas B., Busiello G., et al. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC

Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker J.M., editor. The Proteomics Protocols Handbook. Humana Press; Totowa, NJ, USA: 2005.

NCBI (National Center for Biotechnology Information) Bethesda (MD): National Library of Medicine (US) [(accessed on 3 January 2020)]; Available online: https://www.ncbi.nlm.nih.gov/

Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI

Lisa V., Boccardo G. Fabaviruses: Broad Bean Wilt and Allied Viruses. In: Harrison B.D., Murant A.F., editors. The Plant Viruses, Volume 5: Polyhedral Virion and Bipartite RNA Genomes. Plenum Press; New York, NY, USA: 1996. pp. 229–250.

Edwardson J.R., Christie R.G. CRC Handbook of Viruses Infecting Legumes. CRC Press; Boca Raton, FL, USA: 1991. p. 504.

Vaughan R., Tragesser B., Ni P., Ma X., Dragnea B., Kao C.C. The Tripartite Virions of the Brome Mosaic Virus Have Distinct Physical Properties That Affect the Timing of the Infection Process. J. Virol. 2014;88:6483–6491. doi: 10.1128/JVI.00377-14. PubMed DOI PMC

Ding X.S., Mannas S.W., Bishop B.A., Rao X.L., Lecoultre M., Kwon S., Nelson R.S. An Improved Brome mosaic virus Silencing Vector: Greater Insert Stability and More Extensive VIGS. Plant. Physiol. 2018;176:496–510. doi: 10.1104/pp.17.00905. PubMed DOI PMC

Hodge B.A., Salgado J.D., Paul P.A., Stewart L.R. Characterization of an Ohio Isolate of Brome Mosaic Virus and Its Impact on the Development and Yield of Soft Red Winter Wheat. Plant. Dis. 2019;103:1101–1111. doi: 10.1094/PDIS-07-18-1282-RE. PubMed DOI

Rastgou M., Khatabi B., Kvarnheden A., Izadpanah K. Relationships of Barley yellow dwarf virus-PAV and Cereal yellow dwarf virus-RPV from Iran with viruses of the family Luteoviridae. Eur. J. Plant Pathol. 2005;113:321–326. doi: 10.1007/s10658-005-1231-y. DOI

D’Arcy C.J., Domier L.L. Luteoviridae. In: Fauquet C.M., Mayo M.A., Maniloff J., Desselberger U., Ball L.A., editors. Virus Taxonomy-Eighth Report of the ICTV. Springer-Verlag; New York, NY, USA: 2005. pp. 891–900.

D’Arcy C.J. Symptomology and host range of barley yellow dwarf. In: D’Arcy C.J., Burnett P.A., editors. Barley Yellow Dwarf: 40 Years of Progress. American Phytopathological Society; St. Paul, MN, USA: 1995. pp. 9–28.

Haas M., Bureau M., Geldreich A., Yot P., Keller M. Cauliflower mosaic virus: Still in the news. Mol. Plant Pathol. 2002;3:419–429. doi: 10.1046/j.1364-3703.2002.00136.x. PubMed DOI

Bak A., Gargani D., Macia J.L., Malouvet E., Vernerey M.S., Blanc S., Drucker M. Virus Factories of Cauliflower Mosaic Virus Are Virion Reservoirs That Engage Actively in Vector Transmission. J. Virol. 2013;87:12207–12215. doi: 10.1128/JVI.01883-13. PubMed DOI PMC

Whitfield A.E., Falk B.W., Rotenberg D. Insect vector-mediated transmission of plant viruses. Virology. 2015;479:278–289. doi: 10.1016/j.virol.2015.03.026. PubMed DOI

Garcia J.A., Glasa M., Cambra M., Candresse T. Plum pox virus and sharka: A model potyvirus and a major disease. Mol. Plant. Pathol. 2014;15:226–241. doi: 10.1111/mpp.12083. PubMed DOI PMC

Gan D.F., Zhang J.A., Jiang H.B., Jiang T., Zhu S.W., Cheng B.J. Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep. 2010;29:1261–1268. doi: 10.1007/s00299-010-0911-z. PubMed DOI

Zhang Y.L., Pennerman K.K., Wang H.X., Yin G.H. Characterization of a Sorghum mosaic virus (SrMV) isolate in China. Saudi J. Biol. Sci. 2016;23:237–242. doi: 10.1016/j.sjbs.2015.02.013. PubMed DOI PMC

Verma N., Kumar K., Kulshrestha S., Raikhy G., Hallan V., Ram R., Zaidi A.A., Garg I.D. Molecular studies on Tomato aspermy virus isolates infecting chrysanthemums. Arch. Phytopathol. Plant Prot. 2009;42:99–111. doi: 10.1080/03235400600951779. DOI

Zaitlin M. The Discovery of the Causal Agent of the Tobacco Mosaic Disease. In: Kung S.D., Yang S.F., editors. Discoveries in Plant Biology. World Publishing Co.; Hong Kong, China: 1998. pp. 105–110.

Kundu J.K., Gadiou S., Schlesingerova G., Dziakova M., Cermak V. Emergence of Quarantine Tobacco ringspot virus in Impatiens walleriana in the Czech Republic. Plant Prot. Sci. 2015;51:115–122. doi: 10.17221/3/2015-PPS. DOI

EPPO (European and Mediterranean Plant Protection Organization) EPPO A2 List of pests recommended for regulation as quarantine pests—Version 2019-09. [(accessed on 1 July 2020)]; Available online: https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list.

Walsh J.A., Jenner C.E. Turnip mosaic virus and the quest for durable resistance. Mol. Plant Pathol. 2002;3:289–300. doi: 10.1046/j.1364-3703.2002.00132.x. PubMed DOI

Nguyen H.D., Tomitaka Y., Ho S.Y.W., Duchene S., Vetten H.J., Lesemann D., Walsh J.A., Gibbs A.J., Ohshima K. Turnip Mosaic Potyvirus Probably First Spread to Eurasian Brassica Crops from Wild Orchids about 1000 Years Ago. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0055336. PubMed DOI PMC

Melcher U. Turnip vein-clearing virus, from pathogen to host expression profile. Mol. Plant Pathol. 2003;4:133–140. doi: 10.1046/j.1364-3703.2003.00159.x. PubMed DOI

Lindblad M., Waern P. Correlation of wheat dwarf incidence to winter wheat cultivation practices. Agric. Ecosyst. Environ. 2002;92:115–122. doi: 10.1016/S0167-8809(01)00302-4. DOI

Sirlová L., Vacke J., Chaloupová M. Reaction of selected winter wheat varieties to autumnal infection with Wheat dwarf virus. Plant. Prot. Sci. 2005;41:1–7. doi: 10.17221/2732-PPS. DOI

Lindsten K., Lindsten B., Abdelmoeti M., Junti N. Purification and some properties of wheat dwarf virus; Proceedings of the 3rd Conference on Virus Diseases of Gramineae in Europe; Rothamsted, UK. 28–30 May 1980; pp. 27–34.

Lindsten K., Vacke J. A possible barley adapted strain of wheat dwarf virus (WDV) Acta Phytopathol. Entomol. Hung. 1991;26:175–180.

Muhire B., Martin D.P., Brown J.K., Navas-Castillo J., Moriones E., Zerbini F.M., Rivera-Bustamante R., Malathi V.G., Briddon R.W., Varsani A. A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae) Arch. Virol. 2013;158:1411–1424. doi: 10.1007/s00705-012-1601-7. PubMed DOI

Svoboda J., Leisova-Svobodova L. First Report of Broad bean wilt virus-2 in Pepper in the Czech Republic. Plant. Dis. 2013;97:1261. doi: 10.1094/PDIS-03-13-0232-PDN. PubMed DOI

Glasa M., Palkovics L., Kominek P., Kabonne G., Pittnerova S., Kudela O., Candresse T., Subr Z. Geographically and temporally distant natural recombinant isolates of Plum pox virus (PPV) are genetically very similar and form a unique PPV subgroup. J. Gen. Virol. 2004;85:2671–2681. doi: 10.1099/vir.0.80206-0. PubMed DOI

Viktorova J., Klcova B., Rehorova K., Vlcko T., Stankova L., Jelenova N., Cejnar P., Kundu J.K., Ohnoutkova L., Macek T. Recombinant expression of osmotin in barley improves stress resistance and food safety during adverse growing conditions. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0212718. PubMed DOI PMC

Clark M.F., Adams A.N. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977;34:475–483. doi: 10.1099/0022-1317-34-3-475. PubMed DOI

Predajna L., Subr Z., Candresse T., Glasa M. Evaluation of the genetic diversity of Plum pox virus in a single plum tree. Virus Res. 2012;167:112–117. doi: 10.1016/j.virusres.2012.04.002. PubMed DOI

Ferrer R.M., Ferriol I., Moreno P., Guerri J., Rubio L. Genetic variation and evolutionary analysis of broad bean wilt virus 2. Arch. Virol. 2011;156:1445–1450. doi: 10.1007/s00705-011-0990-3. PubMed DOI

Gadiou S., Ripl J., Janourova B., Jarosova J., Kundu J.K. Real-time PCR assay for the discrimination and quantification of wheat and barley strains of Wheat dwarf virus. Virus Genes. 2012;44:349–355. doi: 10.1007/s11262-011-0699-0. PubMed DOI

Subr Z., Pittnerova S., Glasa M. A simplified RT-PCR-based detection of recombinant Plum pox virus isolates. Acta Virol. 2004;48:173–176. PubMed

Virus Collection CRI Virus Collection of the Crop Research Institute. [(accessed on 3 January 2020)]; Available online: http://www.vurv.cz/collections/vurv.exe/search?org=VI.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...