Efficient Confirmation of Plant Viral Proteins and Identification of Specific Viral Strains by nanoLC-ESI-Q-TOF Using Single-Leaf-Tissue Samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO0418
Ministerstvo Zemědělství
LTAIN19007
Ministry of Education, Youth and Sports of the Czech Republic
APVV-18-0005
Agentúra na Podporu Výskumu a Vývoja
PubMed
33228257
PubMed Central
PMC7699591
DOI
10.3390/pathogens9110966
PII: pathogens9110966
Knihovny.cz E-zdroje
- Klíčová slova
- LC-MS/MS, protein extraction protocol, viral proteins detection, virus detection,
- Publikační typ
- časopisecké články MeSH
Plant viruses are important pathogens that cause significant crop losses. A plant protein extraction protocol that combines crushing the tissue by a pestle in liquid nitrogen with subsequent crushing by a roller-ball crusher in urea solution, followed by RuBisCO depletion, reduction, alkylation, protein digestion, and ZipTip purification allowed us to substantially simplify the sample preparation by removing any other precipitation steps and to detect viral proteins from samples, even with less than 0.2 g of leaf tissue, by a medium resolution nanoLC-ESI-Q-TOF. The presence of capsid proteins or polyproteins of fourteen important viruses from seven different families (Geminiviridae, Luteoviridae, Bromoviridae, Caulimoviridae, Virgaviridae, Potyviridae, and Secoviridae) isolated from ten different economically important plant hosts was confirmed through many identified pathogen-specific peptides from a protein database of host proteins and potential pathogen proteins assembled separately for each host and based on existing online plant virus pathogen databases. The presented extraction protocol, combined with a medium resolution LC-MS/MS, represents a cost-efficient virus protein confirmation method that proved to be effective at identifying virus strains (as demonstrated for PPV, WDV) and distinct disease species of BYDV, as well as putative new viral protein sequences from single-plant-leaf tissue samples. Data are available via ProteomeXchange with identifier PXD022456.
Zobrazit více v PubMed
Vanderschuren H., Stupak M., Futterer J., Gruissem W., Zhang P. Engineering resistance to geminiviruses—Review and perspectives. Plant. Biotechnol. J. 2007;5:207–220. doi: 10.1111/j.1467-7652.2006.00217.x. PubMed DOI
Oerke E.C. Crop losses to pests. J. Agric. Sci. 2006;144:31–43. doi: 10.1017/S0021859605005708. DOI
Savary S., Ficke A., Aubertot J.N., Hollier C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012;4:519–537. doi: 10.1007/s12571-012-0200-5. DOI
Levy S.E., Myers R.M. Advancements in Next-Generation Sequencing. Annu. Rev. Genom. Hum. G. 2016;17:95–115. doi: 10.1146/annurev-genom-083115-022413. PubMed DOI
Stark R., Grzelak M., Hadfield J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019;20:631–656. doi: 10.1038/s41576-019-0150-2. PubMed DOI
Kuckova S., Cejnar P., Santrucek J., Hynek R. Characterization of proteins in cultural heritage using MALDI–TOF and LC–MS/MS mass spectrometric techniques. Phys. Sci. Rev. 2018;4 doi: 10.1515/psr-2018-0011. DOI
Chen Y., Vu J., Thompson M.G., Sharpless W.A., Chan L.J.G., Gin J.W., Keasling J.D., Adams P.D., Petzold C.J. A rapid methods development workflow for high-throughput quantitative proteomic applications. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0211582. PubMed DOI PMC
Wenger C.D., Coon J.J. A Proteomics Search Algorithm Specifically Designed for High-Resolution Tandem Mass Spectra. J. Proteome Res. 2013;12:1377–1386. doi: 10.1021/pr301024c. PubMed DOI PMC
Tu C.J., Sheng Q.H., Li J., Ma D.J., Shen X.M., Wang X., Shyr Y., Yi Z.P., Qu J. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data. J. Proteome Res. 2015;14:4662–4673. doi: 10.1021/acs.jproteome.5b00536. PubMed DOI PMC
Beck S., Michalski A., Raether O., Lubeck M., Kaspar S., Goedecke N., Baessmann C., Hornburg D., Meier F., Paron I., et al. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics. Mol. Cell Proteomics. 2015;14:2014–2029. doi: 10.1074/mcp.M114.047407. PubMed DOI PMC
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
Thomas J.J., Bakhtiar R., Siuzdak G. Mass spectrometry in viral proteomics. Acc. Chem. Res. 2000;33:179–187. PubMed
Trauger S.A., Junker T., Siuzdak G. Investigating viral proteins and intact viruses with mass spectrometry. Top. Curr. Chem. 2003;225:265–282. doi: 10.1007/b10476. DOI
Blouin A.G., Greenwood D.R., Chavan R.R., Pearson M.N., Clover G.R.G., MacDiarmid R.M., Cohen D. A generic method to identify plant viruses by high-resolution tandem mass spectrometry of their coat proteins. J. Virol. Methods. 2010;163:49–56. doi: 10.1016/j.jviromet.2009.08.009. PubMed DOI
Cooper B., Eckert D., Andon N.L., Yates J.R., Haynes P.A. Investigative proteomics: Identification of an unknown plant virus from infected plants using mass spectrometry. J. Am. Soc. Mass Spectr. 2003;14:736–741. doi: 10.1016/S1044-0305(03)00125-9. PubMed DOI
Di Carli M., Benvenuto E., Donini M. Recent Insights into Plant-Virus Interactions through Proteomic Analysis. J. Proteome Res. 2012;11:4765–4780. doi: 10.1021/pr300494e. PubMed DOI
Fang X.P., Chen J.P., Dai L.Y., Ma H.S., Zhang H.M., Yang J., Wang F., Yan C.Q. Proteomic dissection of plant responses to various pathogens. Proteomics. 2015;15:1525–1543. doi: 10.1002/pmic.201400384. PubMed DOI
Jorrin-Novo J.V., Pascual J., Sanchez-Lucas R., Romero-Rodriguez M.C., Rodriguez-Ortega M.J., Lenz C., Valledor L. Fourteen years of plant proteomics reflected in Proteomics: Moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics. 2015;15:1089–1112. doi: 10.1002/pmic.201400349. PubMed DOI
Crowell A.M.J., Wall M.J., Doucette A.A. Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta. 2013;796:48–54. doi: 10.1016/j.aca.2013.08.005. PubMed DOI
Feist P., Hummon A.B. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples. Int J. Mol. Sci. 2015;16:3537–3563. doi: 10.3390/ijms16023537. PubMed DOI PMC
Bodzon-Kulakowska A., Bierczynska-Krzysik A., Dylag T., Drabik A., Suder P., Noga M., Jarzebinska J., Silberring J. Methods for samples preparation in proteomic research. J. Chromatogr. B. 2007;849:1–31. doi: 10.1016/j.jchromb.2006.10.040. PubMed DOI
Burgess R.R. Protein Precipitation Techniques. Methods Enzymol. 2009;463:331–342. doi: 10.1016/S0076-6879(09)63020-2. PubMed DOI
Gundry R.L., White M.Y., Murray C.I., Kane L.A., Fu Q., Stanley B.A., Van Eyk J.E. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr. Protoc. Mol. Biol. 2009;90:10–25. doi: 10.1002/0471142727.mb1025s88. PubMed DOI PMC
Suttapitugsakul S., Xiao H.P., Smeekens J., Wu R.H. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS- based proteomics. Mol. Biosyst. 2017;13:2574–2582. doi: 10.1039/C7MB00393E. PubMed DOI PMC
Muller T., Winter D. Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents. Mol. Cell Proteomics. 2017;16:1173–1187. doi: 10.1074/mcp.M116.064048. PubMed DOI PMC
Sun S.S., Zhou J.Y., Yang W.M., Zhang H. Inhibition of protein carbamylation in urea solution using ammonium-containing buffers. Anal. Biochem. 2014;446:76–81. doi: 10.1016/j.ab.2013.10.024. PubMed DOI PMC
Gupta R., Wang Y.M., Agrawal G.K., Rakwal R., Jo I.H., Bang K.H., Kim S.T. Time to dig deep into the plant proteome: A hunt for low-abundance proteins. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00022. PubMed DOI PMC
Kim Y.J., Lee H.M., Wang Y.M., Wu J., Kim S.G., Kang K.Y., Park K.H., Kim Y.C., Choi I.S., Agrawal G.K., et al. Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method. Proteomics. 2013;13:2176–2179. doi: 10.1002/pmic.201200555. PubMed DOI
Krishnan H.B., Natarajan S.S. A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins. Phytochemistry. 2009;70:1958–1964. doi: 10.1016/j.phytochem.2009.08.020. PubMed DOI
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Nesvizhskii A.I., Keller A., Kolker E., Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003;75:4646–4658. doi: 10.1021/ac0341261. PubMed DOI
Burger T. Gentle Introduction to the Statistical Foundations of False Discovery Rate in Quantitative Proteomics. J. Proteome Res. 2018;17:12–22. doi: 10.1021/acs.jproteome.7b00170. PubMed DOI
Nesvizhskii A.I. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics. 2010;73:2092–2123. doi: 10.1016/j.jprot.2010.08.009. PubMed DOI PMC
Plant Viruses Online Plant Viruses Online: Descriptions and Lists from the VIDE Database. [(accessed on 3 January 2020)]; Version: 20th August 1996. Available online: http://bio-mirror.im.ac.cn/mirrors/pvo/vide/refs.htm.
Adams M.J., Antoniw J.F. DPVweb: A comprehensive database of plant and fungal virus genes and genomes. Nucleic Acids Res. 2006;34:D382–D385. doi: 10.1093/nar/gkj023. PubMed DOI PMC
Descriptions of Plant Viruses. [(accessed on 3 January 2020)]; Available online: http://www.dpvweb.net/dpv/dpvnameidx.php.
Nesvizhskii A.I. Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol. Biol. 2007;367:87–119. doi: 10.1385/1-59745-275-0:87. PubMed DOI
Tabb D.L., Friedman D.B., Ham A.J.L. Verification of automated peptide identifications from proteomic tandem mass spectra. Nat. Protoc. 2006;1:2213–2222. doi: 10.1038/nprot.2006.330. PubMed DOI PMC
Kourelis J., Kaschani F., Grosse-Holz F.M., Homma F., Kaiser M., van der Hoorn R.A.L. A homology-guided, genome-based proteome for improved proteomics in the alloploid Nicotiana benthamiana. Bmc Genomics. 2019;20 doi: 10.1186/s12864-019-6058-6. PubMed DOI PMC
Kundu J.K., Jarosova J., Gadiou S., Cervena G. Discrimination of Three BYDV Species by One-step RT-PCR-RFLP and Sequence Based Methods in Cereal Plants from the Czech Republic. Cereal Res. Commun. 2009;37:541–550. doi: 10.1556/CRC.37.2009.4.7. DOI
Mann M., Ong S.E., Gronborg M., Steen H., Jensen O.N., Pandey A. Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends Biotechnol. 2002;20:261–268. doi: 10.1016/S0167-7799(02)01944-3. PubMed DOI
Gessulat S., Schmidt T., Zolg D.P., Samaras P., Schnatbaum K., Zerweck J., Knaute T., Rechenberger J., Delanghe B., Huhmer A., et al. Prosit: Proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods. 2019;16:509. doi: 10.1038/s41592-019-0426-7. PubMed DOI
Tiwary S., Levy R., Gutenbrunner P., Soto F.S., Palaniappan K.K., Deming L., Berndl M., Brant A., Cimermancic P., Cox J. High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis. Nat. Methods. 2019;16:519. doi: 10.1038/s41592-019-0427-6. PubMed DOI
CABI (CAB International) Invasive Species Compendium. [(accessed on 1 July 2020)]; Available online: https://www.cabi.org/isc.
APS (The American Phytopathological Society) Common Names of Plant Diseases. [(accessed on 1 July 2020)]; Available online: https://www.apsnet.org/edcenter/resources/commonnames/Pages/default.aspx.
ICTV (International Committee on Taxonomy of Viruses) Virus Taxonomy: 2019 Release. [(accessed on 1 July 2020)]; Available online: https://talk.ictvonline.org/taxonomy/
Vizcaino J.A., Deutsch E.W., Wang R., Csordas A., Reisinger F., Rios D., Dianes J.A., Sun Z., Farrah T., Bandeira N., et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014;32:223–226. doi: 10.1038/nbt.2839. PubMed DOI PMC
Elias J.E., Gygi S.R. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. Methods Mol. Biol. 2010;604:55–71. doi: 10.1007/978-1-60761-444-9_5. PubMed DOI PMC
Bateman A., Martin M.J., Orchard S., Magrane M., Alpi E., Bely B., Bingley M., Britto R., Bursteinas B., Busiello G., et al. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker J.M., editor. The Proteomics Protocols Handbook. Humana Press; Totowa, NJ, USA: 2005.
NCBI (National Center for Biotechnology Information) Bethesda (MD): National Library of Medicine (US) [(accessed on 3 January 2020)]; Available online: https://www.ncbi.nlm.nih.gov/
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Lisa V., Boccardo G. Fabaviruses: Broad Bean Wilt and Allied Viruses. In: Harrison B.D., Murant A.F., editors. The Plant Viruses, Volume 5: Polyhedral Virion and Bipartite RNA Genomes. Plenum Press; New York, NY, USA: 1996. pp. 229–250.
Edwardson J.R., Christie R.G. CRC Handbook of Viruses Infecting Legumes. CRC Press; Boca Raton, FL, USA: 1991. p. 504.
Vaughan R., Tragesser B., Ni P., Ma X., Dragnea B., Kao C.C. The Tripartite Virions of the Brome Mosaic Virus Have Distinct Physical Properties That Affect the Timing of the Infection Process. J. Virol. 2014;88:6483–6491. doi: 10.1128/JVI.00377-14. PubMed DOI PMC
Ding X.S., Mannas S.W., Bishop B.A., Rao X.L., Lecoultre M., Kwon S., Nelson R.S. An Improved Brome mosaic virus Silencing Vector: Greater Insert Stability and More Extensive VIGS. Plant. Physiol. 2018;176:496–510. doi: 10.1104/pp.17.00905. PubMed DOI PMC
Hodge B.A., Salgado J.D., Paul P.A., Stewart L.R. Characterization of an Ohio Isolate of Brome Mosaic Virus and Its Impact on the Development and Yield of Soft Red Winter Wheat. Plant. Dis. 2019;103:1101–1111. doi: 10.1094/PDIS-07-18-1282-RE. PubMed DOI
Rastgou M., Khatabi B., Kvarnheden A., Izadpanah K. Relationships of Barley yellow dwarf virus-PAV and Cereal yellow dwarf virus-RPV from Iran with viruses of the family Luteoviridae. Eur. J. Plant Pathol. 2005;113:321–326. doi: 10.1007/s10658-005-1231-y. DOI
D’Arcy C.J., Domier L.L. Luteoviridae. In: Fauquet C.M., Mayo M.A., Maniloff J., Desselberger U., Ball L.A., editors. Virus Taxonomy-Eighth Report of the ICTV. Springer-Verlag; New York, NY, USA: 2005. pp. 891–900.
D’Arcy C.J. Symptomology and host range of barley yellow dwarf. In: D’Arcy C.J., Burnett P.A., editors. Barley Yellow Dwarf: 40 Years of Progress. American Phytopathological Society; St. Paul, MN, USA: 1995. pp. 9–28.
Haas M., Bureau M., Geldreich A., Yot P., Keller M. Cauliflower mosaic virus: Still in the news. Mol. Plant Pathol. 2002;3:419–429. doi: 10.1046/j.1364-3703.2002.00136.x. PubMed DOI
Bak A., Gargani D., Macia J.L., Malouvet E., Vernerey M.S., Blanc S., Drucker M. Virus Factories of Cauliflower Mosaic Virus Are Virion Reservoirs That Engage Actively in Vector Transmission. J. Virol. 2013;87:12207–12215. doi: 10.1128/JVI.01883-13. PubMed DOI PMC
Whitfield A.E., Falk B.W., Rotenberg D. Insect vector-mediated transmission of plant viruses. Virology. 2015;479:278–289. doi: 10.1016/j.virol.2015.03.026. PubMed DOI
Garcia J.A., Glasa M., Cambra M., Candresse T. Plum pox virus and sharka: A model potyvirus and a major disease. Mol. Plant. Pathol. 2014;15:226–241. doi: 10.1111/mpp.12083. PubMed DOI PMC
Gan D.F., Zhang J.A., Jiang H.B., Jiang T., Zhu S.W., Cheng B.J. Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep. 2010;29:1261–1268. doi: 10.1007/s00299-010-0911-z. PubMed DOI
Zhang Y.L., Pennerman K.K., Wang H.X., Yin G.H. Characterization of a Sorghum mosaic virus (SrMV) isolate in China. Saudi J. Biol. Sci. 2016;23:237–242. doi: 10.1016/j.sjbs.2015.02.013. PubMed DOI PMC
Verma N., Kumar K., Kulshrestha S., Raikhy G., Hallan V., Ram R., Zaidi A.A., Garg I.D. Molecular studies on Tomato aspermy virus isolates infecting chrysanthemums. Arch. Phytopathol. Plant Prot. 2009;42:99–111. doi: 10.1080/03235400600951779. DOI
Zaitlin M. The Discovery of the Causal Agent of the Tobacco Mosaic Disease. In: Kung S.D., Yang S.F., editors. Discoveries in Plant Biology. World Publishing Co.; Hong Kong, China: 1998. pp. 105–110.
Kundu J.K., Gadiou S., Schlesingerova G., Dziakova M., Cermak V. Emergence of Quarantine Tobacco ringspot virus in Impatiens walleriana in the Czech Republic. Plant Prot. Sci. 2015;51:115–122. doi: 10.17221/3/2015-PPS. DOI
EPPO (European and Mediterranean Plant Protection Organization) EPPO A2 List of pests recommended for regulation as quarantine pests—Version 2019-09. [(accessed on 1 July 2020)]; Available online: https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list.
Walsh J.A., Jenner C.E. Turnip mosaic virus and the quest for durable resistance. Mol. Plant Pathol. 2002;3:289–300. doi: 10.1046/j.1364-3703.2002.00132.x. PubMed DOI
Nguyen H.D., Tomitaka Y., Ho S.Y.W., Duchene S., Vetten H.J., Lesemann D., Walsh J.A., Gibbs A.J., Ohshima K. Turnip Mosaic Potyvirus Probably First Spread to Eurasian Brassica Crops from Wild Orchids about 1000 Years Ago. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0055336. PubMed DOI PMC
Melcher U. Turnip vein-clearing virus, from pathogen to host expression profile. Mol. Plant Pathol. 2003;4:133–140. doi: 10.1046/j.1364-3703.2003.00159.x. PubMed DOI
Lindblad M., Waern P. Correlation of wheat dwarf incidence to winter wheat cultivation practices. Agric. Ecosyst. Environ. 2002;92:115–122. doi: 10.1016/S0167-8809(01)00302-4. DOI
Sirlová L., Vacke J., Chaloupová M. Reaction of selected winter wheat varieties to autumnal infection with Wheat dwarf virus. Plant. Prot. Sci. 2005;41:1–7. doi: 10.17221/2732-PPS. DOI
Lindsten K., Lindsten B., Abdelmoeti M., Junti N. Purification and some properties of wheat dwarf virus; Proceedings of the 3rd Conference on Virus Diseases of Gramineae in Europe; Rothamsted, UK. 28–30 May 1980; pp. 27–34.
Lindsten K., Vacke J. A possible barley adapted strain of wheat dwarf virus (WDV) Acta Phytopathol. Entomol. Hung. 1991;26:175–180.
Muhire B., Martin D.P., Brown J.K., Navas-Castillo J., Moriones E., Zerbini F.M., Rivera-Bustamante R., Malathi V.G., Briddon R.W., Varsani A. A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae) Arch. Virol. 2013;158:1411–1424. doi: 10.1007/s00705-012-1601-7. PubMed DOI
Svoboda J., Leisova-Svobodova L. First Report of Broad bean wilt virus-2 in Pepper in the Czech Republic. Plant. Dis. 2013;97:1261. doi: 10.1094/PDIS-03-13-0232-PDN. PubMed DOI
Glasa M., Palkovics L., Kominek P., Kabonne G., Pittnerova S., Kudela O., Candresse T., Subr Z. Geographically and temporally distant natural recombinant isolates of Plum pox virus (PPV) are genetically very similar and form a unique PPV subgroup. J. Gen. Virol. 2004;85:2671–2681. doi: 10.1099/vir.0.80206-0. PubMed DOI
Viktorova J., Klcova B., Rehorova K., Vlcko T., Stankova L., Jelenova N., Cejnar P., Kundu J.K., Ohnoutkova L., Macek T. Recombinant expression of osmotin in barley improves stress resistance and food safety during adverse growing conditions. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0212718. PubMed DOI PMC
Clark M.F., Adams A.N. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977;34:475–483. doi: 10.1099/0022-1317-34-3-475. PubMed DOI
Predajna L., Subr Z., Candresse T., Glasa M. Evaluation of the genetic diversity of Plum pox virus in a single plum tree. Virus Res. 2012;167:112–117. doi: 10.1016/j.virusres.2012.04.002. PubMed DOI
Ferrer R.M., Ferriol I., Moreno P., Guerri J., Rubio L. Genetic variation and evolutionary analysis of broad bean wilt virus 2. Arch. Virol. 2011;156:1445–1450. doi: 10.1007/s00705-011-0990-3. PubMed DOI
Gadiou S., Ripl J., Janourova B., Jarosova J., Kundu J.K. Real-time PCR assay for the discrimination and quantification of wheat and barley strains of Wheat dwarf virus. Virus Genes. 2012;44:349–355. doi: 10.1007/s11262-011-0699-0. PubMed DOI
Subr Z., Pittnerova S., Glasa M. A simplified RT-PCR-based detection of recombinant Plum pox virus isolates. Acta Virol. 2004;48:173–176. PubMed
Virus Collection CRI Virus Collection of the Crop Research Institute. [(accessed on 3 January 2020)]; Available online: http://www.vurv.cz/collections/vurv.exe/search?org=VI.