Aluminum Stress Induces Irreversible Proteomic Changes in the Roots of the Sensitive but Not the Tolerant Genotype of Triticale Seedlings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35050053
PubMed Central
PMC8781804
DOI
10.3390/plants11020165
PII: plants11020165
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress tolerance, acidic soils, proteomic studies, two dimensional electrophoresis (2-DE), × Triticosecale Wittmack,
- Publikační typ
- časopisecké články MeSH
Triticale is a wheat-rye hybrid with a higher abiotic stress tolerance than wheat and is better adapted for cultivation in light-type soils, where aluminum ions are present as Al-complexes that are harmful to plants. The roots are the first plant organs to contact these ions and the inhibition of root growth is one of the first plant reactions. The proteomes of the root apices in Al-tolerant and -sensitive plants were investigated to compare their regeneration effects following stress. The materials used in this study consisted of seedlings of three triticale lines differing in Al3+ tolerance, first subjected to aluminum ion stress and then recovered. Two-dimensional electrophoresis (2-DE) was used for seedling root protein separation followed by differential spot analysis using liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS/MS). The plants' tolerance to the stress was evaluated based on biometric screening of seedling root regrowth upon regeneration. Our results suggest that the Al-tolerant genotype can recover, without differentiation of proteome profiles, after stress relief, contrary to Al-sensitive genotypes that maintain the proteome modifications caused by unfavorable environments.
Zobrazit více v PubMed
Lee S.S., Schmidt M., Sturchio N., Nagy K., Fenter P. Effect of pH on the Formation of Gibbsite-Layer Films at the Muscovite (001)−Water Interface. J. Phys. Chem. C. 2019;123:6560–6571. doi: 10.1021/acs.jpcc.8b12122. DOI
Kochian L.V., Piñeros M.A., Hoekenga O.A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. In: Lambers H., Colmer T.D., editors. Root Physiology: From Gene to Function. Springer; Dordrecht, The Netherlands: 2005. pp. 175–195.
Barceló J., Poschenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review. Environ. Exp. Bot. 2002;48:75–92. doi: 10.1016/S0098-8472(02)00013-8. DOI
Yang Y., Wang Q.L., Geng M.J., Guo Z.H., Zhao Z. Rhizosphere pH difference regulated by plasma membrane H+-ATPase is related to differential Al tolerance of two wheat cultivars. Plant Soil Envion. 2011;57:201–206. doi: 10.17221/419/2010-PSE. DOI
Blamey F.P.C. The Role of the Root Cell Wall in Aluminum Toxicity. In: Ae N., Arihara J., Okada K., Srinivasan A., editors. Plant Nutrient Acquisition. Springer; Tokyo, Japan: 2001. pp. 201–226.
Matsumoto H. Cell biology of aluminium toxicity and tolerancein higher plants. Int. Rev. Cytol. 2000;200:1–46. doi: 10.1016/s0074-7696(00)00001-2. PubMed DOI
Kochian L.V. Cellular mechanisms of aluminium toxicity and tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1995;46:237–260. doi: 10.1146/annurev.pp.46.060195.001321. DOI
Fontecha G., Silva-Navas J., Benito C., Mestres M.A., Espino F.J., Hernández-Riquer M.V., Gallego F.J. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.) Theor. Appl. Genet. 2007;114:249–260. doi: 10.1007/s00122-006-0427-7. PubMed DOI
Silva-Navas J., Benito C., Téllez-Robledo B., Abd El-Moneim D., Gallego F.J. The ScAACT1 gene at the Qalt5locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.) Mol. Breed. 2012;30:845–856. doi: 10.1007/s11032-011-9668-5. DOI
Ryan P.R., Raman H., Gupta S., Horst W.J., Delhaize E. A Second Mechanism for Aluminum Resistance in Wheat Relies on the Constitutive Efflux of Citrate from Roots. Plant Physiol. 2009;149:340–351. doi: 10.1104/pp.108.129155. PubMed DOI PMC
Garcia-Oliveira A.L., Benito C., Prieto P., de Andrade Menezes R., Rodrigues-Pousada C., Guedes-Pinto H., Martins-Lopes P. Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.) BMC Plant Biol. 2013;13:134. doi: 10.1186/1471-2229-13-134. PubMed DOI PMC
Li J., Liu J., Dong D., Jia X., McCouch S., Kochian L. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc. Natl. Acad. Sci. USA. 2014;111:6503–6508. doi: 10.1073/pnas.1318975111. PubMed DOI PMC
Tyagi W., Yumnam J.S., Sen D., Rai M. Root transcriptome reveals efficient cell signaling and energy conservation key to aluminum toxicity tolerance in acidic soil adapted rice genotype. Sci. Rep. 2020;10:4580. doi: 10.1038/s41598-020-61305-7. PubMed DOI PMC
Niedziela A., Bednarek P.T., Labudda M., Mańkowski D.R., Anioł A. Genetic mapping of a 7R Al tolerance QTL in triticale (× Triticosecale Wittmack) J. Appl. Genet. 2014;55:1–14. doi: 10.1007/s13353-013-0170-0. PubMed DOI PMC
Niedziela A., Bednarek P.T., Cichy H., Budzianowski G., Kilian A., Anioł A. Aluminum tolerance association mapping in triticale. BMC Genom. 2012;13:67. doi: 10.1186/1471-2164-13-67. PubMed DOI PMC
Budzianowski G., Woś H. The effect of single D-genome chromosomes on aluminum tolerance of triticale. Euphytica. 2004;137:165–172. doi: 10.1023/B:EUPH.0000041547.76282.01. DOI
Kosová K., Vítámvás P., Urban M.O., Klíma M., Roy A., Tom Prášil I. Biological networks underlying abiotic stress tolerance in temperate crops-a proteomic perspective. Int. J. Mol. Sci. 2015;16:20913–20942. doi: 10.3390/ijms160920913. PubMed DOI PMC
Kosová K., Vítámvás P., Prášil I.T. Proteomics of stress responses in wheat and barley—Search for potential protein markers of stress tolerance. Front. Plant Sci. 2014;5:711. doi: 10.3389/fpls.2014.00711. PubMed DOI PMC
Yang J.L., Li Y.Y., Zhang Y.J., Zhang S.S., Wu Y.R., Wu P., Zheng S.J. Cell Wall Polysaccharides Are Specifically Involved in the Exclusion of Aluminum from the Rice Root Apex. Plant Physiol. 2008;146:602–611. doi: 10.1104/pp.107.111989. PubMed DOI PMC
Wang C., Shen R.F., Wang W. Root protein profile changes induced by Al exposure in two rice cultivars differing in Al tolerance. J. Proteom. 2012;78:281–293. doi: 10.1016/j.jprot.2012.09.035. PubMed DOI
Oh M.W., Roy S.K., Kamal A.H.M., Cho K., Cho S.-W., Park C.-S., Choi J.-S., Komatsu S., Woo S.-H. Proteome analysis of roots of wheat seedlings under aluminum stress. Mol. Biol. Rep. 2014;41:671–681. doi: 10.1007/s11033-013-2905-8. PubMed DOI
Dai J., Bai G., Zhang D., Hong D. Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Euphytica. 2013;192:171–179. doi: 10.1007/s10681-012-0807-9. DOI
Duressa D., Soliman K., Taylor R., Senwo Z. Proteomic Analysis of Soybean Roots under Aluminum Stress. Int. J. Plant Genom. 2011;2011:282531. doi: 10.1155/2011/282531. PubMed DOI PMC
Zheng L., Lan P., Shen R.F., Li W.F. Proteomics of aluminum tolerance in plants. Proteimics. 2014;14:566–578. doi: 10.1002/pmic.201300252. PubMed DOI
Fukuda T., Saito A., Wasaki J., Shinano T., Osaki M. Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Sci. 2007;172:1157–1165. doi: 10.1016/j.plantsci.2007.02.020. DOI
Zhou S., Sauvé R., Thannhauser T.W. Proteome changes induced by aluminium stress in tomato roots. J. Exp. Bot. 2009;60:1849–1857. doi: 10.1093/jxb/erp065. PubMed DOI
Ezaki B., Katsuhara M., Kawamura M., Matsumoto H. Different Mechanisms of Four Aluminum (Al)-Resistant Transgenes for Al Toxicity in Arabidopsis. Plant Physiol. 2001;127:918–927. doi: 10.1104/pp.010399. PubMed DOI PMC
Wei Y., Jiang C., Han R., Xie Y., Liu L., Yu Y. Plasma membrane proteomic analysis by TMT-PRM provides insight into mechanisms of aluminum resistance in tamba black soybean roots tips. PeerJ. 2020;8:e9312. doi: 10.7717/peerj.9312. PubMed DOI PMC
Grębosz J., Badowiec A., Weidner S. Changes in the root proteome of Triticosecale grains germinating under osmotic stress. Acta Physiol. Plant. 2014;36:825–835. doi: 10.1007/s11738-013-1461-0. DOI
Meriño-Gergichevich C., Ondrasek G., Zovko M., Šamec D., Alberdi M., Reyes-Díaz M. Comparative study of methodologies to determine the antioxidant capacity of Al-toxified blueberry amended with calcium sulfate. J. Soil Sci. Plant Nutr. 2015;15:965–978. doi: 10.4067/S0718-95162015005000067. DOI
Arnao M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000;11:419–421. doi: 10.1016/S0924-2244(01)00027-9. DOI
Szklarczyk D., Morris J.H., Cook H., Kuhn M., Wyder S., Simonovic M., Santos A., Doncheva N.T., Roth A., Bork P., et al. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–D368. doi: 10.1093/nar/gkw937. PubMed DOI PMC
Matsumoto H., Senoo Y., Kasai M., Maeshima M. Response of the plant root to aluminum stress: Analysis of the inhibition of the root elongation and changes in membrane function. J. Plant Res. 1996;109:99–105. doi: 10.1007/BF02344294. DOI
Vartapetian B.B., Andeeva I.N., Generozova I.P., Polyakova L.I., Maslova I.P., Dogikh Y.I., Stepanova A.Y. Functional Electron Microscopy in Studies of Plant response and adaptation to Anaerobic Stress. Ann. Bot. 2003;91:155–172. doi: 10.1093/aob/mcf244. PubMed DOI PMC
Szewińska J., Różańska E., Papierowska E., Labudda M. Proteolytic and Structural Changes in Rye and Triticale Roots under Aluminum Stress. Cells. 2021;10:3046. doi: 10.3390/cells10113046. PubMed DOI PMC
Aniol A., Gustafson J. Chromosome location of genes controlling aluminium tolerance in wheat, rye, and triticale. Genome. 1984;26:701–705. doi: 10.1139/g84-111. DOI
Aniol A. Induction of Aluminum Tolerance in Wheat Seedlings by Low Doses of Aluminum in the Nutrient Solution. Plant Physiol. 1984;76:551–555. doi: 10.1104/pp.76.3.551. PubMed DOI PMC
Kim B.Y., Baier A.C., Somers D.J., Gustafson J.P. Aluminum tolerance in triticale, wheat and rye. Euphytica. 2001;120:329–337. doi: 10.1023/A:1017598219054. DOI
Wang Y., Cai Y., Cao Y., Liu J. Aluminum-activated root malate and citrate exudation is independent of NIP1;2-facilitated root-cell-wall aluminum removal in Arabidopsis. Plant Signal. Behav. 2018;13:e1422469. doi: 10.1080/15592324.2017.1422469. PubMed DOI PMC
Li M., Pu Y., Yoo C.G., Ragauskas A. The occurrence of tricin and its derivatives in plants. Green Chem. 2016;18:1439–1454. doi: 10.1039/C5GC03062E. DOI
Chandran D., Sharopova N., Ivashuta S., Gantt J.S., VandenBosch K.A., Samac D.A. Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta. 2008;228:151–166. doi: 10.1007/s00425-008-0726-0. PubMed DOI
Jung J., Hong M., Kim D., Kim J., Heo H., Kim T., Jang C., Seo Y.W. Structural and expressional divergence of genes encoding O-methyltransferase in wheat. Genome. 2008;51:856–869. doi: 10.1139/G08-069. PubMed DOI
Zhou J.-M., Seo Y.W., Ibrahim R.K. Biochemical characterization of a putative wheat caffeic acid O-methyltransferase. Plant Physiol. Biochem. 2009;47:322–326. doi: 10.1016/j.plaphy.2008.11.011. PubMed DOI
Cai X., Ge C., Xu C., Wang X., Wang S., Wang Q. Expression Analysis of Oxalate Metabolic Pathway Genes Reveals Oxalate Regulation Patterns in Spinach. Molecules. 2018;23:1286. doi: 10.3390/molecules23061286. PubMed DOI PMC
Tamás L., Budíková S., Huttová J., Mistrík I., Simonovicová M., Siroká B. Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production. Plant Cell Rep. 2005;24:189–194. doi: 10.1007/s00299-005-0939-7. PubMed DOI
Delisle G., Champoux M., Houde M. Characterization of Oxalate Oxidase and Cell Death in Al-Sensitive and Tolerant Wheat Roots. Plant Cell Physiol. 2001;42:324–333. doi: 10.1093/pcp/pce041. PubMed DOI
Noctor G., Arisi A., Jouanin L., Kunert K., Rennenberg H., Foyer C. Review article. Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 1998;49:623–647. doi: 10.1093/jexbot/49.321.623. DOI
Dmitriev A.A., Krasnov G.S., Rozhmina T.A., Kishlyan N.V., Zyablitsin A.V., Sadritdinova A.F., Snezhkina A.V., Fedorova M.S., Yurkevich O.Y., Muravenko O.V., et al. Glutathione S-transferases and UDP-glycosyltransferases Are Involved in Response to Aluminum Stress in Flax. Front. Plant Sci. 2016;7:1920. doi: 10.3389/fpls.2016.01920. PubMed DOI PMC
Cancado G.M.A., De Rosa V.E., Fernandez J.H., Maron L.G., Jorge R.A., Menossi M. Glutathione S-transferase and aluminum toxicity in maize. Funct. Plant Biol. 2005;32:1045–1055. doi: 10.1071/FP05158. PubMed DOI
Panda S.K., Matsumoto H. Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress. Biometals. 2010;23:753–762. doi: 10.1007/s10534-010-9342-0. PubMed DOI
Fukuda H., Hirakawa Y., Sawa S. Peptide signaling in vascular development. Curr. Opin. Plant Biol. 2007;10:477–482. doi: 10.1016/j.pbi.2007.08.013. PubMed DOI
Kim B.-G., Sung S.H., Chong Y., Lim Y., Ahn J.-H. Plant Flavonoid O-Methyltransferases: Substrate Specificity and Application. J. Plant Biol. 2010;53:321–329. doi: 10.1007/s12374-010-9126-7. DOI
Poschenrieder C., Tolrà R., Barceló J. A role for cyclic hydroxamates in aluminum resistance in maize? J. Inorg. Biochem. 2005;99:1830–1836. doi: 10.1016/j.jinorgbio.2005.05.017. PubMed DOI
Neal A.L., Ahmad S., Gordon-Weeks R., Ton J. Benzoxazinoids in Root Exudates of Maize Attract Pseudomonas putida to the Rhizosphere. PLoS ONE. 2012;7:e35498. doi: 10.1371/journal.pone.0035498. PubMed DOI PMC
Fujita S., Pytela J., Hotta T., Kato T., Hamada T., Akamatsu R., Ishida Y., Kutsuna N., Hasezawa S., Nomura Y., et al. An Atypical Tubulin Kinase Mediates Stress-Induced Microtubule Depolymerization in Arabidopsis. Curr. Biol. 2013;23:1969–1978. doi: 10.1016/j.cub.2013.08.006. PubMed DOI
Sivaguru M., Baluška F., Volkmann D., Felle H.H., Horst W.J. Impacts of Aluminum on the Cytoskeleton of the Maize Root Apex. Short-Term Effects on the Distal Part of the Transition Zone. Plant Physiol. 1999;119:1073–1082. doi: 10.1104/pp.119.3.1073. PubMed DOI PMC
Bi X., Ren J., Goss D.J. Wheat Germ Translation Initiation Factor eIF4B Affects eIF4A and eIFiso4F Helicase Activity by Increasing the ATP Binding Affinity of eIF4A. Biochemistry. 2000;39:5758–5765. doi: 10.1021/bi992322p. PubMed DOI
Tuteja N., Vashisht A., Tuteja R. Translation initiation factor 4A: A prototype member of dead-box protein family. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2008;14:101–107. doi: 10.1007/s12298-008-0009-z. PubMed DOI PMC
Pham X.H., Reddy M.K., Ehtesham N.Z., Matta B., Tuteja N. A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. Plant J. 2000;24:219–229. doi: 10.1046/j.1365-313x.2000.00869.x. PubMed DOI
Vashisht A.A., Pradhan A., Tuteja R., Tuteja N. Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J. 2005;44:76–87. doi: 10.1111/j.1365-313X.2005.02511.x. PubMed DOI
Santosh R.B.R.T., Vijaya Naresh J., Sudhakar R.P., Reddy M.K., Mallikarjuna G. Expression of Pennisetum glaucum Eukaryotic Translational Initiation Factor 4A (PgeIF4A) Confers Improved Drought, Salinity, and Oxidative Stress Tolerance in Groundnut. Front. Plant Sci. 2017;8:453. doi: 10.3389/fpls.2017.00453. PubMed DOI PMC
Zhang Z., Liu X., Li R., Yuan L., Dai Y., Wang X. Identification and Functional Analysis of a Protein Disulfide Isomerase (AtPDI1) in Arabidopsis thaliana. Front. Plant Sci. 2018;9:913. doi: 10.3389/fpls.2018.00913. PubMed DOI PMC
Khan R., Siddiqui M., Salahuddin P. Protein Disulfide Isomerase: Structure, Mechanism of Oxidative Protein Folding and Multiple Functional Roles. J. Biochem. Mol. Biol. Res. 2016;2:173–179. doi: 10.17554/j.issn.2313-7177.2016.02.29. DOI
Zhu C., Luo N., He M., Chen G., Zhu J., Yin G., Li X., Hu Y., Li J., Yan Y. Molecular Characterization and Expression Profiling of the Protein Disulfide Isomerase Gene Family in Brachypodium distachyon L. PLoS ONE. 2014;9:e94704. doi: 10.1371/journal.pone.0094704. PubMed DOI PMC
Kayum M.A., Park J.-I., Nath U.K., Saha G., Biswas M.K., Kim H.-T., Nou I.-S. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis) BMC Genom. 2017;18:885. doi: 10.1186/s12864-017-4277-2. PubMed DOI PMC
Lyzenga W.J., Stone S.L. Abiotic stress tolerance mediated by protein ubiquitination. J. Exp. Bot. 2011;63:599–616. doi: 10.1093/jxb/err310. PubMed DOI
Lv G.-Y., Guo X.-G., Xie L.-P., Xie C.-G., Zhang X.-H., Yang Y., Xiao L., Tang Y.-Y., Pan X.-L., Guo A.-G., et al. Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat (Triticum aestivum L.) Front. Plant Sci. 2017;8:1030. doi: 10.3389/fpls.2017.01030. PubMed DOI PMC
Foster D.W. Malonyl-CoA: The regulator of fatty acid synthesis and oxidation. J. Clin. Investig. 2012;122:1958–1959. doi: 10.1172/JCI63967. PubMed DOI PMC
Wagatsuma T. The membrane lipid bilayer as a regulated barrier to cope with detrimental ionic conditions: Making new tolerant plant lines with altered membrane lipid bilayer. Soil Sci. Plant Nutr. 2017;63:507–516. doi: 10.1080/00380768.2017.1369362. DOI
Lindberg S., Griffiths G. Aluminium Effects on ATPase Activity and Lipid Composition of Plasma Membranes in Sugar Beet Roots. J. Exp. Bot. 1993;44:1543–1550. doi: 10.1093/jxb/44.10.1543. DOI
Zhang G., Slaski J.J., Archambault D.J., Taylor G.J. Alternation of plasma membrane lipids in aluminum-resistant and aluminum-sensitive wheat genotypes in response to aluminum stress. Physiol. Plant. 1997;99:302–308. doi: 10.1111/j.1399-3054.1997.tb05416.x. DOI
Maejima E., Watanabe T. Proportion of phospholipids in the plasma membrane is an important factor in Al tolerance. Plant Signal. Behav. 2014;9:e29277. doi: 10.4161/psb.29277. PubMed DOI PMC
Zeng H., Xu L., Singh A., Wang H., Du L., Poovaiah B.W. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front. Plant Sci. 2015;6:600. doi: 10.3389/fpls.2015.00600. PubMed DOI PMC
Hanin M., Brini F., Ebel C., Toda Y., Takeda S., Masmoudi K. Plant dehydrins and stress tolerance. Plant Signal. Behav. 2011;6:1503–1509. doi: 10.4161/psb.6.10.17088. PubMed DOI PMC
Niedziela A. The influence of Al3+ on DNA methylation and sequence changes in the triticale (× Triticosecale Wittmack) genome. J. Appl. Genet. 2018;59:405–417. doi: 10.1007/s13353-018-0459-0. PubMed DOI PMC
Hurkman W.J., Tanaka C.K. Solubilization of Plant Membrane Proteins for Analysis by Two-Dimensional Gel Electrophoresis. Plant Physiol. 1986;81:802–806. doi: 10.1104/pp.81.3.802. PubMed DOI PMC
Laemmli U. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Nykiel M., Lisik P., Dębski J., Florea B.I., Rybka K. Chl a fluorescence and proteomics reveal the protection of photosynthetic apparatus in tolerant but not susceptible to dehydration wheat cultivar. Biol. Plant. 2019;63:287–297. doi: 10.32615/bp.2019.033. DOI