Protein contribution to plant salinity response and tolerance acquisition

. 2013 Mar 26 ; 14 (4) : 6757-89. [epub] 20130326

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23531537

The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stress- and defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed.

Zobrazit více v PubMed

Munns R. Genes and salt tolerance: Bringing them together. Tansley. Rev. New Phytol. 2005;167:645–663. PubMed

Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–250. PubMed

Munns R., Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008;59:651–681. PubMed

Kosová K., Vítámvás P., Prášil I.T., Renaut J. Plant proteome changes under abiotic stress— contribution of proteomics studies to understanding plant stress response. J. Proteomics. 2011;74:1301–1322. PubMed

Flowers T.J., Hajibagheri M.A., Clipson N.J.W. Halophytes. Q. Rev. Biol. 1986;61:313–337.

Flowers T.J., Colmer T.D. Salinity tolerance in halophytes. Tansley Review. New Phytol. 2008;179:945–963. PubMed

Colmer T.D., Flowers T.J., Munns R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006;57:1059–1078. PubMed

Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000;51:463–499. PubMed

Flowers T.J. Improving crop salt tolerance. J. Exp. Bot. 2004;55:307–319. PubMed

Munns R., James R.A., Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006;57:1025–1043. PubMed

Zhu J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant. Biol. 2002;53:247–273. PubMed PMC

Yamaguchi-Shinozaki K., Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 2006;57:781–803. PubMed

Sobhanian H., Aghaei K., Komatsu S. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? J. Proteomics. 2011;74:1323–1337. PubMed

Zhang H., Han B., Wang T., Chen S., Li H., Zhang Y., Dai S. Mechanisms of plant salt response: Insights from proteomics. J. Proteome Res. 2012;11:49–67. PubMed

Inan G., Zhang Q., Li P., Wang Z., Cao Z., Zhang H., Zhang C., Quist T.M., Goodwin M.S., Zhu J., et al. Salt cress. A halophyte and cryophyte Arabidopsis relative model systém and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol. 2004;135:1718–1737. PubMed PMC

Sengupta S., Majumder A.L. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia. coarctata: A physiological and proteomic approach. Planta. 2009;229:911–929. PubMed

Sengupta S., Majumder A.L. Porteresia. coarctata (Roxb.) Tateoka, a wild rice: A potential model for studying salt-stress biology in rice. Plant Cell Environ. 2010;33:526–542. PubMed

Dassanayake M., Oh D.H., Haas J.S., Hernandez A., Hong H., Ali S., Yun D.J., Bressan R.A., Zhu J.K., Bohnert H.J., et al. The genome of the extremophile crucifer Thellungiella. parvula. Nat. Genet. 2011;43:913–918. PubMed PMC

Taji T., Seki M., Satou M., Sakurai T., Kobayashi M., Ishiyama K., Narusaka Y., Narusaka M., Zhu J.K., Shinozaki K. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 2004;135:1697–1709. PubMed PMC

Gong Q., Li P., Ma S., Rupassara S.I., Bohnert H.J. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant. J. 2005;44:826–839. PubMed

Kant S., Kant P., Raveh E., Barak S. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant. Cell Environ. 2006;29:1220–1234. PubMed

Pang Q., Chen S., Dai S., Chen Y., Wang Y., Yan X. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J. Proteome Res. 2010;9:2584–2599. PubMed

Wang M.C., Peng Z.Y., Li C.L., Li F., Liu C., Xia G.M. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics. 2008;8:1470–1489. PubMed

Wakeel A., Asif A.R., Pitann B., Schubert S. Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. J. Plant Physiol. 2011;168:519–526. PubMed

Jellouli N., Ben Jouira H., Skouri H., Ghorbel A., Gourgouri A., Mliki A. Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress. J. Plant Physiol. 2008;165:471–481. PubMed

Askari H., Edqvist J., Hajheidari M., Kafi M., Salekdeh G.H. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics. 2006;6:2542–2554. PubMed

Wang X., Fan P., Song H., Chen X., Li X., Li Y. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J. Proteome Res. 2009;8:3331–3345. PubMed

Yu J., Chen S., Zhao Q., Wang T., Yang C., Diaz C., Sun G., Dai S. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J. Proteome Res. 2011;10:3852–3870. PubMed

Sobhanian H., Motamed N., Jazii F.R., Nakamura T., Komatsu S. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J. Proteome Res. 2010;9:2882–2897. PubMed

Caruso G., Cavaliere C., Guarino C., Gubbiotti R., Foglia P., Lagana A. Identification of changes in Triticum. durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spektrometry. Anal. Bioanal. Chem. 2008;391:381–390. PubMed

Liska A.J., Shevchenko A., Pick U., Katz A. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol. 2004;136:2806–2817. PubMed PMC

Katz A., Waride P., Shevchenko A., Pick U. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella. salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol. Cell Proteomics. 2007;6:1459–1472. PubMed

Mehta P.A., Rebala K.C., Venkataraman G., Parida A. A diurnally regulated dehydrin from Avicennia marina that shows nucleo-cytoplasmic localization and is phosphorylated by Casein kinase II in vitro. Plant Physiol. Biochem. 2009;47:701–709. PubMed

Manaa A., Ahmed H.B., Valot B., Bouchet J.P., Aschi-Smiti S., Causse M., Faurobet M. Salt and genotype impact on plant physiology and root proteome variations in tomato. J. Exp. Bot. 2011;62:2797–2813. PubMed

Tada Y., Kashimura T. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol. 2009;50:439–446. PubMed

Levitt J. Chilling, Freezing and High Temperature Stress. 2nd ed. Academic Press; New York NY, USA: 1980. Responses of Plants to Environmental Stress.

Larcher W. Physiological Plant. Ecology. 4th ed. Springer Verlag; Berlin/Heidelberg, Germany: 2003.

Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hirayama T., Shinozaki K. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell. 1999;11:1743–1754. PubMed PMC

Finkelstein R. Abscisic acid: A seed maturation and antistress signal. In: Taiz L., Zeigler E., editors. Plant Physiology. 4th ed. Sinauer Associates, Inc; Sunderland, MA, USA: 2006. pp. 593–616.

Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324:1064–1068. PubMed

Park S.Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F.F., et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324:1068–1071. PubMed PMC

Klingler J.P., Batelli G., Zhu J.K. ABA receptors: The START of a new paradigm in phytohormone signalling. J. Exp. Bot. 2010;61:3199–3210. PubMed PMC

Pandey S., Nelson D.C., Assmann S.A. Two novel GPCR-type G proteins are abscisic acid receptor in Arabidopsis. Cell. 2009;136:136–148. PubMed

Kosová K., Vítámvás P., Prášil I.T. The role of dehydrins in plant stress response. In: Pessarakli M., editor. Handbook of Plant. and Crop. Stress. 3rd ed. CRC Press, Taylor and Francis; Boca Raton, FL, USA: 2010. pp. 239–285.

Liu J., Ishitani M., Halfter U., Kim C.S., Zhu J.K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA. 2000;97:3730–3734. PubMed PMC

Shi H., Ishitani M., Kim C., Zhu J.K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA. 2000;97:6896–6901. PubMed PMC

Shi H., Quintero F.J., Pardo J.M., Zhu J.K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant. Cell. 2002;14:465–477. PubMed PMC

Shi H., Zhu J.K. SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiol. 2002;129:585–593. PubMed PMC

Mohr H., Schopfer P. Plant Physiology. 4th ed. Springer-Verlag; Berlin/Heidelberg, Germany: 1995.

Kumari S., Panjabi V., Kushwaha H.R., Sopory S.K., Singla-Pareek S.L., Pareek A. Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct. Integr. Genomics. 2009;9:109–123. PubMed

Jiang Y., Yang B., Harris N.S., Deyholos M.K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 2007;58:3591–3607. PubMed

Ndimba B.K., Chivasa S., Simon W.J., Slabas A.R. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics. 2005;5:4185–4196. PubMed

Dani V., Simon W.J., Duranti M., Croy R.R.D. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics. 2005;5:737–745. PubMed

Razavizadeh R., Ehsanpour A.A., Ahsan N., Komatsu S. Proteome analysis of tobacco leaves under salt stress. Peptides. 2009;30:1651–1659. PubMed

Chen F., Zhang S., Jiang H., Ma W., Korpelainen H., Li C. Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings. J. Proteome Res. 2011;10:3944–3958. PubMed

Chattopadhyay A., Subba P., Pandey A., Bhushan D., Kumar R., Datta A., Chakraborty S., Chakraborty N. Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry. 2011;72:1293–1307. PubMed

Xu C., Sibicky T., Huang B. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep. 2010;29:595–615. PubMed

Abbasi F.M., Komatsu S. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics. 2004;4:2072–2081. PubMed

Chitteti B., Peng Z. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J. Proteome Res. 2007;6:1718–1727. PubMed

Dooki A.D., Mayer-Posner F.J., Askari H., Zaiee A.A., Salekdeh G.H. Proteomic responses of rice young panicles to salinity. Proteomics. 2006;6:6498–6507. PubMed

Kim D.W., Rakwal R., Agrawal G.K., Jung Y.H., Shibato J., Jwa N.S., Iwahashi Y., Iwahashi H., Kim D.H., Shim I.S., et al. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis. 2005;26:4521–4539. PubMed

Yan S., Tang Z., Su W., Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics. 2005;5:235–244. PubMed

Jacoby R.P., Millar A.H., Taylor N.L. Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J. Proteome Res. 2010;9:6595–6604. PubMed

Peng Z., Wang M., Li F., Lv H., Li C., Xia G. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol. Cell Proteomics. 2009;8:2676–2686. PubMed PMC

Fatehi F., Hosseinzadeh A., Alizadeh H., Brimavandi T., Struik P.C. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol. Biol. Rep. 2012;39:6387–6397. PubMed

Rasoulnia A., Bihamta M.R., Peyghambari S.A., Alizadeh H., Rahnama A. Proteomic response of barley leaves to salinity. Mol. Biol. Rep. 2011;38:5055–5063. PubMed

Sugimoto M., Takeda K. Proteomic analysis of specific proteins in the root of salt-tolerant barley. Biosci. Biotech. Biochem. 2009;73:2762–2765. PubMed

Witzel K., Weidner A., Surabhi G.K., Börner A., Mock H.P. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J. Exp. Bot. 2009;60:3546–3557. PubMed PMC

Witzel K., Weidner A., Surabhi G.K., Varshney R.K., Kunze G., Buck-Sorlin G.H., Börner A., Mock H.P. Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ. 2010;33:211–222. PubMed

Veeranagamallaiah G., Jyothsnakumari G., Thippeswamy M., Reddy P.C.O., Surabhi G.K., Sriranganayakulu G., Mahesh Y., Rajasekhar B., Madhurarekha C., Sudhakar C. Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci. 2008;175:631–641.

Bandehagh A., Salekdeh G.H., Toorchi M., Mohammadi A., Komatsu S. Comparative proteomic analysis of canola leaves under salinity stress. Proteomics. 2011;11:1965–1975. PubMed

Aghaei K., Ehsanpour A.A., Shah A.H., Komatsu S. Proteome analysis of soybean hypokotyl and root under salt stress. Amino Acids. 2009;36:91–98. PubMed

Sobhanian H., Razavizadeh R., Nanjo Y., Ehsanpour A.A., Jazii F.R., Motamed N., Komatsu S. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci. 2010;8:19. PubMed PMC

Kav N.N.V., Srivastava S., Goonewardende L., Blade S.F. Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann. Appl. Biol. 2004;145:217–230.

Jain S., Srivastava S., Sarin N.B., Kav N.N.V. Proteomics reveals elevated levels of PR10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol. Biochem. 2006;44:253–259. PubMed

Kumar Swami A., Alam S.I., Sengupta N., Sarin R. Differential proteomic analysis of salt response in Sorghum bicolor leaves. Environ. Exp. Bot. 2011;71:321–328.

Ngara R., Ndimba R., Borch-Jensen J., Jensen O.N., Ndimba B. Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J. Proteomics. 2012;75:4139–4150. PubMed

Zörb C., Herbst R., Forreite C., Schubert S. Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics. 2009;9:4209–4220. PubMed

Zörb C., Schmitt S., Mühling K.H. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics. 2010;10:4441–4449. PubMed

Chen S., Gollop N., Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J. Exp. Bot. 2009;60:2005–2019. PubMed PMC

Aghaei K., Ehsanpour A.A., Komatsu S. Proteome analysis of potato under salt stress. J. Proteome Res. 2008;7:4858–4868. PubMed

Du C.X., Fan H.F., Guo S.R., Tezuka T., Li J. Proteomic analysis of cucmber seedling roots subjected to salt stress. Phytochemistry. 2010;71:1450–1459. PubMed

Tanou G., Job C., Rajjou L., Arc E., Belghazi M., Diamantidis G., Molassiotis A., Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 2009;60:795–804. PubMed

Vincent D., Ergül A., Bohlman M.C., Tattersall E.A.R., Tillett R.L., Wheatley M.D., Woolsey R., Quilici D.R., Joets J., Schlauch K., et al. Proteomic analysis reveals differences between Vitis. vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J. Exp. Bot. 2007;58:1873–1892. PubMed

Salekdeh G.H., Komatsu S. Crop proteomics: Aim at sustainable agriculture of tomorrow. Proteomics. 2007;7:2976–2996. PubMed

Li W., Zhang C., Lu Q., Wen X., Lu C. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J. Plant. Physiol. 2011;168:1743–1752. PubMed

Barkla B.J., Vera-Estrella R., Hernandez-Coronado M., Pantoja O. Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. Plant Cell. 2009;21:4044–4058. PubMed PMC

Geissler N., Hussin S., Koyro H.W. Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta. 2010;231:583–594. PubMed

Wang X., Yang P., Gao Q., Liu X., Kuang T., Shen S., He Y. Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta. 2008;228:167–177. PubMed

Huang F., Fulda S., Hagermann M., Norling B. Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC6803. Proteomics. 2006;6:910–920. PubMed

Cheng Y., Qi Y., Zhu Q., Chen X., Wang N., Zhao X., Chen H., Cui X., Xu L., Zhang W. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics. 2009;9:3100–3114. PubMed

Caruso A., Morabito D., Delmotte F., Kahlem G., Carpin S. Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol. Biochem. 2002;40:1033–1042.

Godoy J.A., Lunar S., Torres-Schumann J., Moreono J., Rodrigo R.M., Pintor-Toro J.A. Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol. Biol. 1994;26:1921–1934. PubMed

Moons A., Bauw G., Prinsen E., van Montagu M., van Der Straeten D. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varietites. Plant Physiol. 1995;107:177–186. PubMed PMC

Brini F., Hanin M., Lumbreras V., Irar S., Pages M., Masmoudi K. Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci. 2007;172:20–28.

Agarwal P., Reddy M.K., Sopory S.K., Agarwal P.K. Plant Rabs: Characterization, functional diversity, and role in stress tolerance. Plant Mol. Biol. Rep. 2009;27:417–430.

Pandey A., Chakraborty S., Datta A., Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.) Mol. Cell. Proteomics. 2008;7:88–107. PubMed

Singh R., Green M.R. Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science. 1993;259:365–368. PubMed

Ronai Z., Robinson R., Rutberg S., Lazarus P., Sardana M. Aldolase DNA interactions in a SEWA cell system. Biochim. Biophys. Acta. 1992;1130:20–28. PubMed

Lee H., Guo Y., Ohta M., Xiong L., Stevenson B., Zhu J.K. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J. 2002;21:2692–2702. PubMed PMC

Moon H., Lee B., Choi G., Shin S., Prasad D.T., Lee O., Kwak S.S., Kim D.H., Nam J., Bahk J., et al. NDP kinase 2 interacts with two oxidative stress-acivated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA. 2003;100:358–363. PubMed PMC

Hashimoto M., Kisseleva L., Sawa S., Furukawa T., Komatsu S., Koshiba T. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stress, possibly via the jasmonic acid signalling pathway. Plant Cell Physiol. 2004;45:550–559. PubMed

Park C.J., Kim K.J., Shin R., Park J.M., Shin Y.C., Paek K.H. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 2004;37:186–198. PubMed

Mogensen J.E., Wimmer R., Larsen J.N., Spangfort M.D. The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J. Biol. Chem. 2002;277:684–692. PubMed

Zhang W., Peumans W.J., Barre A., Astoul C.H., Rovira P., Rougé P., Proost P., Truffa-Bachi P., Jalali A.A.H., van Damme E.J.M. Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta. 2000;210:970–978. PubMed

Carpita N., Sabularse D., Montezinos D., Delmer D.P. Determination of the pore size of cell walls of living plants. Science. 1979;205:1144–1147. PubMed

Battaglia M., Olvera-Carillo Y., Garciarrubio A., Covarrubias A.A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 2008;48:6–24. PubMed PMC

Hundertmark M., Hincha D.K. LEA (late embryogenesis abundant) proteins and their encoding egenes in Arabidopsis thaliana. BMC Genomics. 2008;9:118–139. PubMed PMC

Batelli G., Verslues P.E., Agius F., Qiu Q., Fujii H., Pan S.Q., Schumaker K., Grillo S., Zhu J.K. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol. Cell. Biol. 2007;27:7781–7790. PubMed PMC

Garcia-Olmedo F., Molina A., Segura A., Moreno M. The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 1995;3:72–74. PubMed

Bugos R.C., Hieber A.D., Yamamoto H.Y. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J. Biol. Chem. 1998;273:15321–15324. PubMed

Vítámvás P., Prášil I.T., Kosová K., Planchon S., Renaut J. Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics. 2012;12:68–85. PubMed

Vítámvás P., Kosová K., Prášilová P., Prášil I.T. Accumulation of WCS120 protein in wheat cultivars grown at 9 °C or 17 °C in relation to their winter survival. Plant Breeding. 2010;129:611–616.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace