Protein contribution to plant salinity response and tolerance acquisition
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23531537
PubMed Central
PMC3645664
DOI
10.3390/ijms14046757
PII: ijms14046757
Knihovny.cz E-zdroje
- MeSH
- fyziologický stres genetika MeSH
- proteomika MeSH
- rostlinné proteiny metabolismus MeSH
- salinita * MeSH
- tolerance k soli * genetika MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- rostlinné proteiny MeSH
The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stress- and defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed.
Zobrazit více v PubMed
Munns R. Genes and salt tolerance: Bringing them together. Tansley. Rev. New Phytol. 2005;167:645–663. PubMed
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–250. PubMed
Munns R., Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008;59:651–681. PubMed
Kosová K., Vítámvás P., Prášil I.T., Renaut J. Plant proteome changes under abiotic stress— contribution of proteomics studies to understanding plant stress response. J. Proteomics. 2011;74:1301–1322. PubMed
Flowers T.J., Hajibagheri M.A., Clipson N.J.W. Halophytes. Q. Rev. Biol. 1986;61:313–337.
Flowers T.J., Colmer T.D. Salinity tolerance in halophytes. Tansley Review. New Phytol. 2008;179:945–963. PubMed
Colmer T.D., Flowers T.J., Munns R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006;57:1059–1078. PubMed
Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000;51:463–499. PubMed
Flowers T.J. Improving crop salt tolerance. J. Exp. Bot. 2004;55:307–319. PubMed
Munns R., James R.A., Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006;57:1025–1043. PubMed
Zhu J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant. Biol. 2002;53:247–273. PubMed PMC
Yamaguchi-Shinozaki K., Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 2006;57:781–803. PubMed
Sobhanian H., Aghaei K., Komatsu S. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? J. Proteomics. 2011;74:1323–1337. PubMed
Zhang H., Han B., Wang T., Chen S., Li H., Zhang Y., Dai S. Mechanisms of plant salt response: Insights from proteomics. J. Proteome Res. 2012;11:49–67. PubMed
Inan G., Zhang Q., Li P., Wang Z., Cao Z., Zhang H., Zhang C., Quist T.M., Goodwin M.S., Zhu J., et al. Salt cress. A halophyte and cryophyte Arabidopsis relative model systém and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol. 2004;135:1718–1737. PubMed PMC
Sengupta S., Majumder A.L. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia. coarctata: A physiological and proteomic approach. Planta. 2009;229:911–929. PubMed
Sengupta S., Majumder A.L. Porteresia. coarctata (Roxb.) Tateoka, a wild rice: A potential model for studying salt-stress biology in rice. Plant Cell Environ. 2010;33:526–542. PubMed
Dassanayake M., Oh D.H., Haas J.S., Hernandez A., Hong H., Ali S., Yun D.J., Bressan R.A., Zhu J.K., Bohnert H.J., et al. The genome of the extremophile crucifer Thellungiella. parvula. Nat. Genet. 2011;43:913–918. PubMed PMC
Taji T., Seki M., Satou M., Sakurai T., Kobayashi M., Ishiyama K., Narusaka Y., Narusaka M., Zhu J.K., Shinozaki K. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 2004;135:1697–1709. PubMed PMC
Gong Q., Li P., Ma S., Rupassara S.I., Bohnert H.J. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant. J. 2005;44:826–839. PubMed
Kant S., Kant P., Raveh E., Barak S. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant. Cell Environ. 2006;29:1220–1234. PubMed
Pang Q., Chen S., Dai S., Chen Y., Wang Y., Yan X. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J. Proteome Res. 2010;9:2584–2599. PubMed
Wang M.C., Peng Z.Y., Li C.L., Li F., Liu C., Xia G.M. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics. 2008;8:1470–1489. PubMed
Wakeel A., Asif A.R., Pitann B., Schubert S. Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. J. Plant Physiol. 2011;168:519–526. PubMed
Jellouli N., Ben Jouira H., Skouri H., Ghorbel A., Gourgouri A., Mliki A. Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress. J. Plant Physiol. 2008;165:471–481. PubMed
Askari H., Edqvist J., Hajheidari M., Kafi M., Salekdeh G.H. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics. 2006;6:2542–2554. PubMed
Wang X., Fan P., Song H., Chen X., Li X., Li Y. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J. Proteome Res. 2009;8:3331–3345. PubMed
Yu J., Chen S., Zhao Q., Wang T., Yang C., Diaz C., Sun G., Dai S. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J. Proteome Res. 2011;10:3852–3870. PubMed
Sobhanian H., Motamed N., Jazii F.R., Nakamura T., Komatsu S. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J. Proteome Res. 2010;9:2882–2897. PubMed
Caruso G., Cavaliere C., Guarino C., Gubbiotti R., Foglia P., Lagana A. Identification of changes in Triticum. durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spektrometry. Anal. Bioanal. Chem. 2008;391:381–390. PubMed
Liska A.J., Shevchenko A., Pick U., Katz A. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol. 2004;136:2806–2817. PubMed PMC
Katz A., Waride P., Shevchenko A., Pick U. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella. salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol. Cell Proteomics. 2007;6:1459–1472. PubMed
Mehta P.A., Rebala K.C., Venkataraman G., Parida A. A diurnally regulated dehydrin from Avicennia marina that shows nucleo-cytoplasmic localization and is phosphorylated by Casein kinase II in vitro. Plant Physiol. Biochem. 2009;47:701–709. PubMed
Manaa A., Ahmed H.B., Valot B., Bouchet J.P., Aschi-Smiti S., Causse M., Faurobet M. Salt and genotype impact on plant physiology and root proteome variations in tomato. J. Exp. Bot. 2011;62:2797–2813. PubMed
Tada Y., Kashimura T. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol. 2009;50:439–446. PubMed
Levitt J. Chilling, Freezing and High Temperature Stress. 2nd ed. Academic Press; New York NY, USA: 1980. Responses of Plants to Environmental Stress.
Larcher W. Physiological Plant. Ecology. 4th ed. Springer Verlag; Berlin/Heidelberg, Germany: 2003.
Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hirayama T., Shinozaki K. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell. 1999;11:1743–1754. PubMed PMC
Finkelstein R. Abscisic acid: A seed maturation and antistress signal. In: Taiz L., Zeigler E., editors. Plant Physiology. 4th ed. Sinauer Associates, Inc; Sunderland, MA, USA: 2006. pp. 593–616.
Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324:1064–1068. PubMed
Park S.Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F.F., et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324:1068–1071. PubMed PMC
Klingler J.P., Batelli G., Zhu J.K. ABA receptors: The START of a new paradigm in phytohormone signalling. J. Exp. Bot. 2010;61:3199–3210. PubMed PMC
Pandey S., Nelson D.C., Assmann S.A. Two novel GPCR-type G proteins are abscisic acid receptor in Arabidopsis. Cell. 2009;136:136–148. PubMed
Kosová K., Vítámvás P., Prášil I.T. The role of dehydrins in plant stress response. In: Pessarakli M., editor. Handbook of Plant. and Crop. Stress. 3rd ed. CRC Press, Taylor and Francis; Boca Raton, FL, USA: 2010. pp. 239–285.
Liu J., Ishitani M., Halfter U., Kim C.S., Zhu J.K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA. 2000;97:3730–3734. PubMed PMC
Shi H., Ishitani M., Kim C., Zhu J.K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA. 2000;97:6896–6901. PubMed PMC
Shi H., Quintero F.J., Pardo J.M., Zhu J.K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant. Cell. 2002;14:465–477. PubMed PMC
Shi H., Zhu J.K. SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiol. 2002;129:585–593. PubMed PMC
Mohr H., Schopfer P. Plant Physiology. 4th ed. Springer-Verlag; Berlin/Heidelberg, Germany: 1995.
Kumari S., Panjabi V., Kushwaha H.R., Sopory S.K., Singla-Pareek S.L., Pareek A. Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct. Integr. Genomics. 2009;9:109–123. PubMed
Jiang Y., Yang B., Harris N.S., Deyholos M.K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 2007;58:3591–3607. PubMed
Ndimba B.K., Chivasa S., Simon W.J., Slabas A.R. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics. 2005;5:4185–4196. PubMed
Dani V., Simon W.J., Duranti M., Croy R.R.D. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics. 2005;5:737–745. PubMed
Razavizadeh R., Ehsanpour A.A., Ahsan N., Komatsu S. Proteome analysis of tobacco leaves under salt stress. Peptides. 2009;30:1651–1659. PubMed
Chen F., Zhang S., Jiang H., Ma W., Korpelainen H., Li C. Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings. J. Proteome Res. 2011;10:3944–3958. PubMed
Chattopadhyay A., Subba P., Pandey A., Bhushan D., Kumar R., Datta A., Chakraborty S., Chakraborty N. Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry. 2011;72:1293–1307. PubMed
Xu C., Sibicky T., Huang B. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep. 2010;29:595–615. PubMed
Abbasi F.M., Komatsu S. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics. 2004;4:2072–2081. PubMed
Chitteti B., Peng Z. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J. Proteome Res. 2007;6:1718–1727. PubMed
Dooki A.D., Mayer-Posner F.J., Askari H., Zaiee A.A., Salekdeh G.H. Proteomic responses of rice young panicles to salinity. Proteomics. 2006;6:6498–6507. PubMed
Kim D.W., Rakwal R., Agrawal G.K., Jung Y.H., Shibato J., Jwa N.S., Iwahashi Y., Iwahashi H., Kim D.H., Shim I.S., et al. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis. 2005;26:4521–4539. PubMed
Yan S., Tang Z., Su W., Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics. 2005;5:235–244. PubMed
Jacoby R.P., Millar A.H., Taylor N.L. Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J. Proteome Res. 2010;9:6595–6604. PubMed
Peng Z., Wang M., Li F., Lv H., Li C., Xia G. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol. Cell Proteomics. 2009;8:2676–2686. PubMed PMC
Fatehi F., Hosseinzadeh A., Alizadeh H., Brimavandi T., Struik P.C. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol. Biol. Rep. 2012;39:6387–6397. PubMed
Rasoulnia A., Bihamta M.R., Peyghambari S.A., Alizadeh H., Rahnama A. Proteomic response of barley leaves to salinity. Mol. Biol. Rep. 2011;38:5055–5063. PubMed
Sugimoto M., Takeda K. Proteomic analysis of specific proteins in the root of salt-tolerant barley. Biosci. Biotech. Biochem. 2009;73:2762–2765. PubMed
Witzel K., Weidner A., Surabhi G.K., Börner A., Mock H.P. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J. Exp. Bot. 2009;60:3546–3557. PubMed PMC
Witzel K., Weidner A., Surabhi G.K., Varshney R.K., Kunze G., Buck-Sorlin G.H., Börner A., Mock H.P. Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ. 2010;33:211–222. PubMed
Veeranagamallaiah G., Jyothsnakumari G., Thippeswamy M., Reddy P.C.O., Surabhi G.K., Sriranganayakulu G., Mahesh Y., Rajasekhar B., Madhurarekha C., Sudhakar C. Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci. 2008;175:631–641.
Bandehagh A., Salekdeh G.H., Toorchi M., Mohammadi A., Komatsu S. Comparative proteomic analysis of canola leaves under salinity stress. Proteomics. 2011;11:1965–1975. PubMed
Aghaei K., Ehsanpour A.A., Shah A.H., Komatsu S. Proteome analysis of soybean hypokotyl and root under salt stress. Amino Acids. 2009;36:91–98. PubMed
Sobhanian H., Razavizadeh R., Nanjo Y., Ehsanpour A.A., Jazii F.R., Motamed N., Komatsu S. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci. 2010;8:19. PubMed PMC
Kav N.N.V., Srivastava S., Goonewardende L., Blade S.F. Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann. Appl. Biol. 2004;145:217–230.
Jain S., Srivastava S., Sarin N.B., Kav N.N.V. Proteomics reveals elevated levels of PR10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol. Biochem. 2006;44:253–259. PubMed
Kumar Swami A., Alam S.I., Sengupta N., Sarin R. Differential proteomic analysis of salt response in Sorghum bicolor leaves. Environ. Exp. Bot. 2011;71:321–328.
Ngara R., Ndimba R., Borch-Jensen J., Jensen O.N., Ndimba B. Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J. Proteomics. 2012;75:4139–4150. PubMed
Zörb C., Herbst R., Forreite C., Schubert S. Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics. 2009;9:4209–4220. PubMed
Zörb C., Schmitt S., Mühling K.H. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics. 2010;10:4441–4449. PubMed
Chen S., Gollop N., Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J. Exp. Bot. 2009;60:2005–2019. PubMed PMC
Aghaei K., Ehsanpour A.A., Komatsu S. Proteome analysis of potato under salt stress. J. Proteome Res. 2008;7:4858–4868. PubMed
Du C.X., Fan H.F., Guo S.R., Tezuka T., Li J. Proteomic analysis of cucmber seedling roots subjected to salt stress. Phytochemistry. 2010;71:1450–1459. PubMed
Tanou G., Job C., Rajjou L., Arc E., Belghazi M., Diamantidis G., Molassiotis A., Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 2009;60:795–804. PubMed
Vincent D., Ergül A., Bohlman M.C., Tattersall E.A.R., Tillett R.L., Wheatley M.D., Woolsey R., Quilici D.R., Joets J., Schlauch K., et al. Proteomic analysis reveals differences between Vitis. vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J. Exp. Bot. 2007;58:1873–1892. PubMed
Salekdeh G.H., Komatsu S. Crop proteomics: Aim at sustainable agriculture of tomorrow. Proteomics. 2007;7:2976–2996. PubMed
Li W., Zhang C., Lu Q., Wen X., Lu C. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J. Plant. Physiol. 2011;168:1743–1752. PubMed
Barkla B.J., Vera-Estrella R., Hernandez-Coronado M., Pantoja O. Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. Plant Cell. 2009;21:4044–4058. PubMed PMC
Geissler N., Hussin S., Koyro H.W. Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta. 2010;231:583–594. PubMed
Wang X., Yang P., Gao Q., Liu X., Kuang T., Shen S., He Y. Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta. 2008;228:167–177. PubMed
Huang F., Fulda S., Hagermann M., Norling B. Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC6803. Proteomics. 2006;6:910–920. PubMed
Cheng Y., Qi Y., Zhu Q., Chen X., Wang N., Zhao X., Chen H., Cui X., Xu L., Zhang W. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics. 2009;9:3100–3114. PubMed
Caruso A., Morabito D., Delmotte F., Kahlem G., Carpin S. Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol. Biochem. 2002;40:1033–1042.
Godoy J.A., Lunar S., Torres-Schumann J., Moreono J., Rodrigo R.M., Pintor-Toro J.A. Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol. Biol. 1994;26:1921–1934. PubMed
Moons A., Bauw G., Prinsen E., van Montagu M., van Der Straeten D. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varietites. Plant Physiol. 1995;107:177–186. PubMed PMC
Brini F., Hanin M., Lumbreras V., Irar S., Pages M., Masmoudi K. Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci. 2007;172:20–28.
Agarwal P., Reddy M.K., Sopory S.K., Agarwal P.K. Plant Rabs: Characterization, functional diversity, and role in stress tolerance. Plant Mol. Biol. Rep. 2009;27:417–430.
Pandey A., Chakraborty S., Datta A., Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.) Mol. Cell. Proteomics. 2008;7:88–107. PubMed
Singh R., Green M.R. Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science. 1993;259:365–368. PubMed
Ronai Z., Robinson R., Rutberg S., Lazarus P., Sardana M. Aldolase DNA interactions in a SEWA cell system. Biochim. Biophys. Acta. 1992;1130:20–28. PubMed
Lee H., Guo Y., Ohta M., Xiong L., Stevenson B., Zhu J.K. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J. 2002;21:2692–2702. PubMed PMC
Moon H., Lee B., Choi G., Shin S., Prasad D.T., Lee O., Kwak S.S., Kim D.H., Nam J., Bahk J., et al. NDP kinase 2 interacts with two oxidative stress-acivated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA. 2003;100:358–363. PubMed PMC
Hashimoto M., Kisseleva L., Sawa S., Furukawa T., Komatsu S., Koshiba T. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stress, possibly via the jasmonic acid signalling pathway. Plant Cell Physiol. 2004;45:550–559. PubMed
Park C.J., Kim K.J., Shin R., Park J.M., Shin Y.C., Paek K.H. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 2004;37:186–198. PubMed
Mogensen J.E., Wimmer R., Larsen J.N., Spangfort M.D. The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J. Biol. Chem. 2002;277:684–692. PubMed
Zhang W., Peumans W.J., Barre A., Astoul C.H., Rovira P., Rougé P., Proost P., Truffa-Bachi P., Jalali A.A.H., van Damme E.J.M. Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta. 2000;210:970–978. PubMed
Carpita N., Sabularse D., Montezinos D., Delmer D.P. Determination of the pore size of cell walls of living plants. Science. 1979;205:1144–1147. PubMed
Battaglia M., Olvera-Carillo Y., Garciarrubio A., Covarrubias A.A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 2008;48:6–24. PubMed PMC
Hundertmark M., Hincha D.K. LEA (late embryogenesis abundant) proteins and their encoding egenes in Arabidopsis thaliana. BMC Genomics. 2008;9:118–139. PubMed PMC
Batelli G., Verslues P.E., Agius F., Qiu Q., Fujii H., Pan S.Q., Schumaker K., Grillo S., Zhu J.K. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol. Cell. Biol. 2007;27:7781–7790. PubMed PMC
Garcia-Olmedo F., Molina A., Segura A., Moreno M. The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 1995;3:72–74. PubMed
Bugos R.C., Hieber A.D., Yamamoto H.Y. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J. Biol. Chem. 1998;273:15321–15324. PubMed
Vítámvás P., Prášil I.T., Kosová K., Planchon S., Renaut J. Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics. 2012;12:68–85. PubMed
Vítámvás P., Kosová K., Prášilová P., Prášil I.T. Accumulation of WCS120 protein in wheat cultivars grown at 9 °C or 17 °C in relation to their winter survival. Plant Breeding. 2010;129:611–616.
Stem Photosynthesis-A Key Element of Grass Pea (Lathyrus sativus L.) Acclimatisation to Salinity
Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome
Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective