Stem Photosynthesis-A Key Element of Grass Pea (Lathyrus sativus L.) Acclimatisation to Salinity

. 2021 Jan 12 ; 22 (2) : . [epub] 20210112

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33445673

Grantová podpora
2018/02/X/NZ9/02245 Narodowe Centrum Nauki

Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.

Zobrazit více v PubMed

Demetriou G., Neonaki C., Navakoudis E., Kotzabasis K. Salt stress impact on the molecular structure and function of the photosynthetic apparatus—the protective role of polyamines. Biochim. Biophys. Acta Bioenerg. 2007;1767:272–280. doi: 10.1016/j.bbabio.2007.02.020. PubMed DOI

Munns R., Gilliham M. Salinity tolerance of crops–what is the cost? New Phytol. 2015;208:668–673. doi: 10.1111/nph.13519. PubMed DOI

FAO. ITPS . Status of the World’s Soil Resources (SWSR)–Main Report. Food and Agriculture Organization of the United Nationsand Intergovernmental Technical Panel on Soils; Rome, Italy: 2015.

Munns R., Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911. PubMed DOI

Atzori G., Nissim W.G., Caparrotta S., Masi E., Azzarello E., Pandolfi C., Vignolini P., Gonelli C., Mancuso S. Potential and constraints of different seawater and freshwater blends as growing media for three vegetable crops. Agric. Water Manag. 2016;176:255–262. doi: 10.1016/j.agwat.2016.06.016. DOI

Kosová K., Prášil I.T., Vítámvás P. Protein contribution to plant salinity response and tolerance acquisition. Int. J. Mol. Sci. 2013;14:6757–6789. PubMed PMC

Munns R. Plant adaptations to salt and water stress. In: Turkan I., editor. Plant Responses to Drought and Salinity Stress—Developments in a Post-Genomic Era. Volume 57. Academic Press; Boston, MA, USA: 2011. pp. 1–32.

Tokarz B., Wójtowicz T., Makowski W., Jędrzejczyk R.J., Tokarz K.M. What is the Difference between the Response of Grass Pea (Lathyrus sativus L.) to Salinity and Drought Stress?—A Physiological Study. Agronomy. 2020;10:833. doi: 10.3390/agronomy10060833. DOI

Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–250. doi: 10.1046/j.0016-8025.2001.00808.x. PubMed DOI

Piwowarczyk B., Tokarz K., Makowski W., Łukasiewicz A. Different acclimatization mechanisms of two grass pea cultivars to osmotic stress in in vitro culture. Acta Physiol. Plan. 2017;39:96. doi: 10.1007/s11738-017-2389-6. DOI

Passioura J.B., Munns R. Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Funct. Plant Biol. 2000;27:941–948. doi: 10.1071/PP99207. DOI

Salehi-Lisar S.Y., Bakhshayeshan-Agdam H. Drought Stress in Plants: Causes, Consequences, and Tolerance. In: Hossain M., Wani S., Bhattacharjee S., Burritt D., Tran L.S., editors. Drought Stress Tolerance in Plants. Volume 1. Springer; Cham, Switzerland: 2016. pp. 1–16.

Zhu J.K. Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 2001;4:401–406. doi: 10.1016/S1369-5266(00)00192-8. PubMed DOI

Isayenkov S.V., Maathuis F.J. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019;10:80. doi: 10.3389/fpls.2019.00080. PubMed DOI PMC

Zhu J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003;6:441–445. doi: 10.1016/S1369-5266(03)00085-2. PubMed DOI

Parida A.K., Das A.B. Salt tolerance and salinity effects on plants: A review. Ecotox. Environ. Safe. 2005;60:324–349. doi: 10.1016/j.ecoenv.2004.06.010. PubMed DOI

Bose J., Munns R., Shabala S., Gilliham M., Pogson B., Tyerman S.D. Chloroplast function and ion regulation in plants growing on saline soils: Lessons from halophytes. J. Exp. Bot. 2017;68:3129–3143. doi: 10.1093/jxb/erx142. PubMed DOI

Suo J., Zhao Q., David L., Chen S., Dai S. Salinity response in chloroplasts: Insights from gene characterization. Int. J. Mol. Sci. 2017;18:1011. doi: 10.3390/ijms18051011. PubMed DOI PMC

Pan T., Liu M., Kreslavski V.D., Zharmukhamedov S.K., Nie C., Yu M., Kuznetsov V.V., Allakhverdiev S.I., Shabala S. Non-stomatal limitation of photosynthesis by soil salinity. Crit. Rev. Environ. Sci. Technol. 2020:1–35. doi: 10.1080/10643389.2020.1735231. DOI

Asrar H., Hussain T., Hadi S.M.S., Gul B., Nielsen B.L., Khan M.A. Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) Staph. Environ. Exp. Bot. 2017;135:86–95. doi: 10.1016/j.envexpbot.2016.12.008. DOI

Jajoo A. Changes in photosystem II in response to salt stress. In: Ahmad P., Azooz M., Prasad M., editors. Ecophysiology and Responses of Plants under Salt Stress. Springer; New York, NY, USA: 2013. pp. 149–168.

Stępień P., Kłobus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant. 2006;50:610. doi: 10.1007/s10535-006-0096-z. DOI

Wungrampha S., Joshi R., Singla-Pareek S.L., Pareek A. Photosynthesis and salinity: Are these mutually exclusive? Photosynthetica. 2018;56:366–381. doi: 10.1007/s11099-017-0763-7. DOI

Chaves M.M., Flexas J., Pinheiro C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009;103:551–560. doi: 10.1093/aob/mcn125. PubMed DOI PMC

Meloni D.A., Gulotta M.R., Martínez C.A. Salinity tolerance in Schinopsis quebracho colorado: Seed germination, growth, ion relations and metabolic responses. J. Arid Environ. 2008;72:1785–1792. doi: 10.1016/j.jaridenv.2008.05.003. DOI

Gururani M.A., Venkatesh J., Tran L.S.P. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant. 2015;8:1304–1320. doi: 10.1016/j.molp.2015.05.005. PubMed DOI

Nishiyama Y., Murata N. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biot. 2014;98:8777–8796. doi: 10.1007/s00253-014-6020-0. PubMed DOI

Davey M.W., Stals E., Panis B., Keulemans J., Swennen R.L. High-throughput determination of malondialdehyde in plant tissues. Anal. Biochem. 2005;347:201–207. doi: 10.1016/j.ab.2005.09.041. PubMed DOI

Al Hassan M., Chaura J., Donat-Torres M.P., Boscaiu M., Vicente O. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AOB Plants. 2017;9:plx009. doi: 10.1093/aobpla/plx009. PubMed DOI PMC

Kataria S., Verma S.K. Salinity Stress Responses and Adaptive Mechanisms in Major Glycophytic Crops: The Story So Far. In: Kumar V., Wani S., Suprasanna P., Tran L.S., editors. Salinity Responses and Tolerance in Plants. Volume 1. Springer; Cham, Switzerland: 2018. pp. 1–39.

Ahmad P., Jaleel C.A., Salem M.A., Nabi G., Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010;30:161–175. doi: 10.3109/07388550903524243. PubMed DOI

Gupta B., Huang B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014;2014:701596. doi: 10.1155/2014/701596. PubMed DOI PMC

Vaz Patto M., Skiba B., Pang E., Ochatt S., Lambein F., Rubiales D. Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection. Euphytica. 2006;147:133–147. doi: 10.1007/s10681-006-3607-2. DOI

Campbell C.G., Mehra R.B., Agrawal S.K., Chen Y.Z., Abd El Moneim A.M., Khawaja H.I.T., Yadov C.R., Tay J.U., Araya W.A. Current status and future strategy in breeding grasspea (Lathyrus sativus) Euphytica. 1993;73:167–175. doi: 10.1007/BF00027192. DOI

Piwowarczyk B., Tokarz K., Kamińska I. Responses of grass pea seedlings to salinity stress in in vitro culture conditions. Plant Cell Tissue Organ Cult. 2016;124:227–240. doi: 10.1007/s11240-015-0887-z. DOI

Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017;524:13–30. doi: 10.1016/j.ab.2016.10.021. PubMed DOI

Kostecka-Gugała A., Ledwożyw-Smoleń I., Augustynowicz J., Wyżgolik G., Kruczek M., Kaszycki P. Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open. Chem. 2015;13:1313–1325. doi: 10.1515/chem-2015-0143. DOI

Kostecka-Gugała A., Kruczek M., Ledwożyw-Smoleń I., Kaszycki P. Antioxidants and health-beneficial nutrients in fruits of eighteen Cucurbita cultivars: Analysis of diversity and dietary implications. Molecules. 2020;25:1792. doi: 10.3390/molecules25081792. PubMed DOI PMC

Piwowarczyk B., Tokarz K., Muszyńska E., Makowski W., Jędrzejczyk R., Gajewski Z., Hanus-Fajerska E. The acclimatization strategies of kidney vetch (Anthyllis vulneraria L.) to Pb toxicity. Environ. Sci. Pollut. Res. 2018;25:19739–19752. doi: 10.1007/s11356-018-2197-6. PubMed DOI PMC

Rozpądek P., Nosek M., Domka A., Ważny R., Jędrzejczyk R., Tokarz K., Pilarska M., Niewiadomska E., Turnau K. Acclimation of the photosynthetic apparatus and alterations in sugar metabolism in response to inoculation with endophytic fungi. Plant Cell Environ. 2019;42:1408–1423. doi: 10.1111/pce.13485. PubMed DOI

Tokarz K.M., Makowski W., Tokarz B., Hanula M., Sitek E., Muszyńska E., Jędrzejczyk R., Banasiuk R., Chajec Ł., Mazur S. Can Ceylon Leadwort (Plumbago zeylanica L.) Acclimate to Lead Toxicity?—Studies of Photosynthetic Apparatus Efficiency. Int. J. Mol. Sci. 2020;21:1866. doi: 10.3390/ijms21051866. PubMed DOI PMC

Goltsev V.N., Kalaji H.M., Paunov M., Bąba W., Horaczek T., Mojski J., Kociel H., Allakhverdiev S.I. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ. J. Plant Physiol. 2016;63:869–893. doi: 10.1134/S1021443716050058. DOI

Jiang H.X., Chen L.S., Zheng J.G., Han S., Tang N., Smith B.R. Aluminum-induced effects on photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol. 2018;28:1863–1871. doi: 10.1093/treephys/28.12.1863. PubMed DOI

Kalaji H.M., Govindjee Bosa K., Kościelniak J., Żuk-Gołaszewska K. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ. Exp. Bot. 2011;73:64–72. doi: 10.1016/j.envexpbot.2010.10.009. DOI

Höhner R., Pribil M., Herbstová M., Lopez L.S., Kunz H.H., Li M., Wood M., Svoboda V., Puthiyaveetil S., Leister D., et al. Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants. Proc. Natl. Acad. Sci. USA. 2020;117:15354–15362. PubMed PMC

Erb T.J., Zarzycki J. A short history of RubisCO: The rise and fall (?) of Nature’s predominant CO2 fixing enzyme. Curr. Opin. Biotechnol. 2018;49:100–107. doi: 10.1016/j.copbio.2017.07.017. PubMed DOI PMC

Fu A., He Z., Cho H.S., Lima A., Buchanan B.B., Luan S. A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2007;104:15947–15952. doi: 10.1073/pnas.0707851104. PubMed DOI PMC

Rantala M., Rantala S., Aro E.M. Composition, phosphorylation and dynamic organization of photosynthetic protein complexes in plant thylakoid membrane. Photochem. Photobiol. Sci. 2020;19:604–619. doi: 10.1039/D0PP00025F. PubMed DOI

Lahlali R., Jiang Y., Kumar S., Karunakaran C., Liu X., Borondics F., Hallin E., Bueckert R. ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front. Plant Sci. 2014;5:747. PubMed PMC

Janik E., Bednarska J., Zubik M., Puzio M., Luchowski R., Grudzinski W., Mazur R., Garstka M., Maksymiec W., Kulik A., et al. Molecular architecture of plant thylakoids under physiological and light stress conditions: A study of lipid–light-harvesting complex II model membranes. Plant Cell. 2013;25:2155–2170. doi: 10.1105/tpc.113.113076. PubMed DOI PMC

Blat A., Dybas J., Kaczmarska M., Chrabaszcz K., Bulat K., Kostogrys R.B., Cernescu A., Malek K., Marzec K.M. An analysis of isolated and intact rbc membranes—A comparison of a semiquantitative approach by means of FTIR, Nano-FTIR, and Raman Spectroscopies. Anal. Chem. 2019;91:9867–9874. doi: 10.1021/acs.analchem.9b01536. PubMed DOI

Nikalje G.C., Kumar J., Nikam T.D., Suprasanna P. FT-IR profiling reveals differential response of roots and leaves to salt stress in a halophyte Sesuvium portulacastrum (L.) L. Biotechnol. Rep. 2019;23:e00352. doi: 10.1016/j.btre.2019.e00352. PubMed DOI PMC

Wiercigroch E., Szafraniec E., Czamara K., Pacia M.Z., Majzner K., Kochan K., Kaczor A., Barańska M., Malek K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta A. 2017;185:317–335. doi: 10.1016/j.saa.2017.05.045. PubMed DOI

Munns R., Schachtman D.P., Condon A.G. The significance of a two-phase growth response to salinity in wheat and barley. Funct. Plant Biol. 1995;22:561–569. doi: 10.1071/PP9950561. DOI

Munns R., Day D.A., Fricke W., Watt M., Arsova B., Barkla B.J., Bose J., Byrt C.S., Chen Z.-H., Foster K.J., et al. Energy costs of salt tolerance in crop plants. New Phytol. 2020;225:1072–1090. doi: 10.1111/nph.15864. PubMed DOI

Munns R., Passioura J.B., Colmer T.D., Byrt C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2020;225:1091–1096. doi: 10.1111/nph.15862. PubMed DOI

Cheng D., Wu G., Zheng Y. Positive correlation between potassium uptake and salt tolerance in wheat. Photosynthetica. 2015;53:447–454. doi: 10.1007/s11099-015-0124-3. DOI

AbdElgawad H., Zinta G., Hegab M.M., Pandey R., Asard H., Abuelsoud W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front. Plant Sci. 2016;7:276. doi: 10.3389/fpls.2016.00276. PubMed DOI PMC

Zhao C., Zhang H., Song C., Zhu J.K., Shabala S. Mechanisms of plant responses and adaptation to soil salinity. Innovation. 2020;1:100017. PubMed PMC

Rubio F., Nieves-Cordones M., Horie T., Shabala S. Doing ‘business as usual’ comes with a cost: Evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytol. 2019;225:1097–1104. doi: 10.1111/nph.15852. PubMed DOI

Liu X., Ma D., Zhang Z., Wang S., Du S., Deng X., Yin L. Plant lipid remodeling in response to abiotic stresses. Environ. Exp. Bot. 2019;165:174–184. doi: 10.1016/j.envexpbot.2019.06.005. DOI

Wang G.P., Li F., Zhang J., Zhao M.R., Hui Z., Wang W. Overaccumulation of glycine betaine ehances tolerance of the photosynthetic appartus to drought and heat stress in wheat. Photosynthetica. 2010;48:30–41. doi: 10.1007/s11099-010-0006-7. DOI

Zhang M., Barg R., Yin M.G., Gueta-Dahan Y., Leikin-Frenkel A., Salts Y., Shabtai S., Ben-Hayyim G. Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J. 2005;44:361–371. PubMed

Cohen Z., Khozin-Goldberg I., Adlerstein D., Bigogno C. The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem. Soc. Trans. 2000;28:740–743. PubMed

Lippold F., Vom Dorp K., Abraham M., Holzl G., Wewer V., Yilmaz J.L., Lager I., Montandon C., Besagni C., Kessler F., et al. Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell. 2012;24:2001–2014. doi: 10.1105/tpc.112.095588. PubMed DOI PMC

Akyuz S., Akyuz T., Celik O., Atak C. FTIR spectroscopy of protein isolates of salt-tolerant soybean mutants. J. Appl. Spectrosc. 2018;84:1019–1023. doi: 10.1007/s10812-018-0580-1. DOI

Forlani G., Trovato M., Funck D., Signorelli S. Regulation of proline accumulation and its molecular and physiological functions in stress. In: Hossain M.A., Kumar V., Burritt D.J., Fujita M., Mäkelä P.S., editors. Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives. Volume 22. Springer; Cham, Switzerland: 2019. pp. 73–97.

Couée I., Sulmon C., Gouesbet G., El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 2006;57:449–459. doi: 10.1093/jxb/erj027. PubMed DOI

Wani S.H., Singh N.B., Haribhushan A., Mir J.I. Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr. Genom. 2013;14:157–165. doi: 10.2174/1389202911314030001. PubMed DOI PMC

Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017;40:4–10. doi: 10.1111/pce.12800. PubMed DOI

Zivcak M., Brestic M., Sytar O. Osmotic adjustment and plant adaptation to drought stress. In: Hossain M.A., Wani S.H., Bhattacharjee S., Burritt D.J., Tran L.S.P., editors. Drought Stress Tolerance in Plants. Volume 1. Springer; Cham, Germany: 2016. pp. 105–143.

Jiao C.J., Jiang J.L., Ke L.M., Cheng W., Li F.M., Li Z.X., Wang C.Y. Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem. Toxicol. 2011;49:543–549. doi: 10.1016/j.fct.2010.04.050. PubMed DOI

Lubitz W., Reijerse E.J., Messinger J. Solar water-splitting into H2 and O2: Design principles of photosystem II and hydrogenases. Energy Environ. Sci. 2008;1:15–31. doi: 10.1039/b808792j. DOI

Gupta R. The oxygen-evolving complex: A super catalyst for life on earth, in response to abiotic stresses. Plant Signal. Behav. 2020;12:1824721. doi: 10.1080/15592324.2020.1824721. PubMed DOI PMC

Renger G., Holzwarth A.R. Primary electron transfer. In: Wydrzynski T.J., Satoh K., Freeman J.A., editors. Photosystem II. Springer; Dordrecht, Germany: 2005. pp. 139–175.

Ruban A.V., Johnson M.P., Duffy C.D. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta Bioenerg. 2012;1817:167–181. doi: 10.1016/j.bbabio.2011.04.007. PubMed DOI

Silveira J.A., Carvalho F.E. Proteomics, photosynthesis and salt resistance in crops: An integrative view. J. Proteom. 2016;143:24–35. doi: 10.1016/j.jprot.2016.03.013. PubMed DOI

Niewiadomska E., Wiciarz M. Adaptations of chloroplastic metabolism in halophytic plants. In: Lüttge U., Beyschlag W., editors. Progress in Botany. Volume 76. Springer; Cham, Switzerland: 2015. pp. 177–193.

Redondo-Gómez S., Wharmby C., Castillo J.M., Mateos-Naranjo E., Luque C.J., de Cires A., Luque T., Davy A.J., Figueroa M.E. Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol. Plant. 2006;128:116–124. doi: 10.1111/j.1399-3054.2006.00719.x. DOI

Rabhi M., Giuntini D., Castagna A., Remorini D., Baldan B., Smaoui A., Abdelly C., Ranieri A. Sesuvium portulacastrum maintains adequate gas exchange, pigment composition, and thylakoid proteins under moderate and high salinity. J. Plant Physiol. 2010;167:1336–1341. doi: 10.1016/j.jplph.2010.05.009. PubMed DOI

Yu J., Chen S., Zhao Q., Wang T., Yang C., Diaz C., Sun G., Dai S. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J. Proteome Res. 2011;10:3852–3870. doi: 10.1021/pr101102p. PubMed DOI

Santos C.V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 2004;103:93–99. doi: 10.1016/j.scienta.2004.04.009. DOI

Dalal V.K., Tripathy B.C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ. 2012;35:1685–1703. doi: 10.1111/j.1365-3040.2012.02520.x. PubMed DOI

Giuliano G. Plant carotenoids: Genomics meets multi-gene engineering. Curr. Opin. Plant Biol. 2014;19:111–117. doi: 10.1016/j.pbi.2014.05.006. PubMed DOI

Liang M.H., Wu F.C., Liang Z.C., Chen H.H., Jiang J.G. Induction of carotenoid cleavage by salt stress and the effect of their products on cell growth and pigment accumulation in Dunaliella sp. FACHB-847. Algal Res. 2020;48:101901. doi: 10.1016/j.algal.2020.101901. DOI

Ramel F., Mialoundama A.S., Havaux M. Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. J. Exp. Bot. 2013;64:799–805. doi: 10.1093/jxb/ers223. PubMed DOI

Van Amerongen H., Croce R. Light harvesting in photosystem II. Photosynth. Res. 2013;116:251–263. doi: 10.1007/s11120-013-9824-3. PubMed DOI PMC

Shu S., Yuan Y., Chen J., Sun J., Zhang W., Tang Y., Zhong M., Guo S. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci. Rep. 2015;5:14390. doi: 10.1038/srep14390. PubMed DOI PMC

Pagliano C., Saracco G., Barber J. Structural, functional and auxiliary proteins of photosystem II. Photosynth. Res. 2013;116:167–188. doi: 10.1007/s11120-013-9803-8. PubMed DOI

Huang L., Li Z., Liu Q., Pu G., Zhang Y., Li J. Research on the adaptive mechanism of photosynthetic apparatus under salt stress: New directions to increase crop yield in saline soils. Ann. Appl. Biol. 2019;175:1–17. doi: 10.1111/aab.12510. DOI

Wang R.L., Hua C., Zhou F., Zhou Q.C. Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar. Photosynthetica. 2009;47:125–127. doi: 10.1007/s11099-009-0019-2. DOI

Tokarz K., Piwowarczyk B., Makowski W. Mechanisms involved in photosynthetic apparatus protection against lead toxicity. In: Gupta D., Chatterjee S., Walther C., editors. Lead in Plants and the Environment. Springer; Cham, Switzerland: 2020. pp. 117–128.

Tyystjärvi E. Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord. Chem. Rev. 2008;252:361–376. doi: 10.1016/j.ccr.2007.08.021. DOI

Bricker T.M., Frankel L.K. Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant Photosystem II: A critical analysis. J. Photochem. Photobiol. B. 2011;104:165–178. doi: 10.1016/j.jphotobiol.2011.01.025. PubMed DOI

Chen S., Gollop N., Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: Effect of genotype and exogenous application of glycinebetaine. J. Exp. Bot. 2009;60:2005–2019. doi: 10.1093/jxb/erp075. PubMed DOI PMC

Vass I. Molecular mechanisms of photodamage in the Photosystem II complex. Biochim. Biophys. Acta Bioenerg. 2012;1817:209–217. doi: 10.1016/j.bbabio.2011.04.014. PubMed DOI

Niyogi K.K., Grossman A.R., Björkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Pant Cell. 1998;10:1121–1134. PubMed PMC

Sofo A., Scopa A., Nuzzaci M., Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J. Mol. Sci. 2015;16:13561–13578. doi: 10.3390/ijms160613561. PubMed DOI PMC

Cuypers A., Smeets K., Ruytinx J., Ruytinx J., Opdenakker K., Keunen E., Remans T., Horemans N., Vanhoudt N., Van Sanden S., et al. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J. Plant Physiol. 2011;168:309–316. doi: 10.1016/j.jplph.2010.07.010. PubMed DOI

Mallik S., Nayak M., Sahu B.B., Panigrahi A.K., Shaw B.P. Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biol. Plant. 2011;55:191–195. doi: 10.1007/s10535-011-0029-3. DOI

Anjum N.A., Sharma P., Gill S.S., Hasanuzzaman M., Khan E.A., Kachhap K., Mohamed A., Thangavel P., Devi G.D., Vasudhevan P., et al. Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environ. Sci. Pollut. Res. 2016;23:19002–19029. doi: 10.1007/s11356-016-7309-6. PubMed DOI

Yoshimura K., Yabuta Y., Ishikawa T., Shigeoka S. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 2000;123:223–234. doi: 10.1104/pp.123.1.223. PubMed DOI PMC

Kangasjärvi S., Lepistö A., Hännikäinen K., Piippo M., Luomala E.M., Aro E.M., Rintamäki E. Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem. J. 2008;412:275–285. doi: 10.1042/BJ20080030. PubMed DOI

Li W., Zhang C.L.Q., Wen X., Lu C. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J. Plant Physiol. 2011;168:1743–1752. doi: 10.1016/j.jplph.2011.03.018. PubMed DOI

Mano J., Ohno C., Domae Y., Asada K. Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: Its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim. Biophys. Acta. 2001;1504:275–287. doi: 10.1016/S0005-2728(00)00256-5. PubMed DOI

Davletova S., Rizhsky L., Liang H., Shengqiang Z., Oliver D.J., Coutu J., Shulaev V., Schlauch K., Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005;17:268–281. doi: 10.1105/tpc.104.026971. PubMed DOI PMC

Doncheva S., Ananieva K., Stefanov D., Vassilev A., Gesheva E., Dinev N. Photosynthetic electron transport and antioxidant defense capacity of sunflower plants under combined heavy metal stress. Genet. Plant Physiol. 2018;8:3–23.

Zhang X., Ma F., Zhu X., Zhu J., Rong J., Zhan J., Chen H., He C., Wang Q. The acceptor side of photosystem II is the initial target of nitrite stress in Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 2017;83:02952-16. doi: 10.1128/AEM.02952-16. PubMed DOI PMC

Kan X., Ren J., Chen T., Cui M., Li C., Zhou R., Zhang Y., Liu H., Deng D., Yin Z. Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ. Exp. Bot. 2017;140:56–64. doi: 10.1016/j.envexpbot.2017.05.019. DOI

Oukarroum A., Bussotti F., Goltsev V., Kalaji H.M. Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ. Exp. Bot. 2015;109:80–88. doi: 10.1016/j.envexpbot.2014.08.005. DOI

Pospíšil P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta Bioenerg. 2012;1817:218–231. doi: 10.1016/j.bbabio.2011.05.017. PubMed DOI

Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012;2012:217037. doi: 10.1155/2012/217037. DOI

Negrao S., Schmöckel S.M., Tester M. Evaluating traits contributing to salinity tolerance. Ann. Bot. 2017;119:13–26. PubMed PMC

Wiciarz M., Niewiadomska E., Kruk J. Effects of salt stress on low molecular antioxidants and redox state of plastoquinone and P700 in Arabidopsis thaliana (glycophyte) and Eutrema salsugineum (halophyte) Photosynthetica. 2018;56:811–819. doi: 10.1007/s11099-017-0733-0. DOI

Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G., Govindjee, editors. Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration. Volume 19. Springer; Dordrecht, Germany: 2004. pp. 321–362.

Kalaji H.M., Schansker G., Brestic M., Bussotti F., Calatayud A., Ferroni L., Goltsev V., Guidi L., Jajoo A., Li P., et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2017;132:13–66. doi: 10.1007/s11120-016-0318-y. PubMed DOI PMC

Asada K. The water–water cycle as alternative photon and electron sinks. Philos. Trans. R. Soc. B. 2000;355:1419–1431. doi: 10.1098/rstb.2000.0703. PubMed DOI PMC

Tikhonov A.N. Induction events and short-term regulation of electron transport in chloroplasts: An overview. Photosynth. Res. 2015;125:65–94. doi: 10.1007/s11120-015-0094-0. PubMed DOI

Suorsa M., Rossi F., Tadini L., Labs M., Colombo M., Jahns P., Kater M.M., Leister D., Finazzi G., Aro E.-M., et al. PGR5-PGRL1-dependent cyclic electron transport modulates linear electron transport rate in Arabidopsis thaliana. Mol. Plant. 2016;9:271–288. doi: 10.1016/j.molp.2015.12.001. PubMed DOI

He Y., Fu J., Yu C., Wang X., Jiang Q., Hong J., Lu K., Xue G., Yan C., James A., et al. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. J. Exp. Bot. 2015;66:6877–6889. doi: 10.1093/jxb/erv392. PubMed DOI PMC

Huang W., Yang Y.J., Zhang J.L., Hu H., Zhang S.B. PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in Psychotria rubra. Photosynth. Res. 2016;129:85–92. doi: 10.1007/s11120-016-0275-5. PubMed DOI

Nawrocki W.J., Bailleul B., Picot D., Cardol P., Rappaport F., Wollman F.A., Joliot P. The mechanism of cyclic electron flow. Biochim. Biophys. Acta Bioenerg. 2019;1860:433–438. doi: 10.1016/j.bbabio.2018.12.005. PubMed DOI

Daum B., Nicastro D., Austin J., McIntosh J.R., Kühlbrandt W. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell. 2010;22:1299–1312. doi: 10.1105/tpc.109.071431. PubMed DOI PMC

Koochak H., Puthiyaveetil S., Mullendore D.L., Li M., Kirchhoff H. The structural and functional domains of plant thylakoid membranes. Plant J. 2019;97:412–429. doi: 10.1111/tpj.14127. PubMed DOI

Wood W.H., Johnson M.P. Modelling the role of LHCII-LHCII, PSII-LHCII and PSI-LHCII interactions in state transitions. Biophys. J. 2020;119:287–299. doi: 10.1016/j.bpj.2020.05.034. PubMed DOI PMC

Lu K.X., Cao B.H., Feng X.P., He Y., Jiang D.A. Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica. 2009;47:381–387. doi: 10.1007/s11099-009-0059-7. DOI

Flexas J., Bota J., Loreto F., Cornic G., Sharkey T.D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 2004;6:269–279. doi: 10.1055/s-2004-820867. PubMed DOI

Razavizadeh R., Ehsanpour A.A., Ahsan N., Komatsu S. Proteome analysis of tobacco leaves under salt stress. Peptides. 2009;30:1651–1659. doi: 10.1016/j.peptides.2009.06.023. PubMed DOI

Sobhanian H., Aghaei K., Komatsu S. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? J. Proteom. 2011;74:1323–1337. doi: 10.1016/j.jprot.2011.03.018. PubMed DOI

Kocurek M., Kornas A., Pilarski J., Tokarz K., Lüttge U., Miszalski Z. Photosynthetic activity of stems in two Clusia species. Trees. 2015;29:1029–1040. doi: 10.1007/s00468-015-1182-7. DOI

Pilarski J., Tokarz K. Chlorophyll distribution in the stems and trunk of beech trees. Acta Physiol. Plant. 2006;28:233–236. doi: 10.1007/BF02706535. DOI

Pfanz H. Bark photosynthesis. Trees. 2008;22:137. doi: 10.1007/s00468-007-0196-1. DOI

Tokarz K., Pilarski J. Optical properties and the content of photosynthetic pigments in the stems and leaves of the apple-tree. Acta Physiol. Plant. 2005;27:183–191. doi: 10.1007/s11738-005-0022-6. DOI

Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981;32:93–101. doi: 10.1093/jxb/32.1.93. DOI

Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Yemm E.W., Willis A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954;57:508–514. doi: 10.1042/bj0570508. PubMed DOI PMC

Addis G., Narayan R.K.J. Developmental Variation of the Neurotoxin, β-N-Oxalyl-l-α, β-diamino propionic acid (ODAP), in Lathyrus sativus. Ann. Bot. 1994;74:209–215. doi: 10.1006/anbo.1994.1111. DOI

Bates L.S., Waldern R.P., Teare I.D. Rapid determination of free proline from water stress studies. Plant Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI

Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method Enzymol. 1987;148:350–356.

Wellburn A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI

Laureau C., De Paepe R., Latouche G., Moreno-Chacon M., Finazzi G., Kuntz M., Cornic G., Streb P. Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. Plant Cell Environ. 2013;36:1296–1310. doi: 10.1111/pce.12059. PubMed DOI

Bradford M.M. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein -dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Jänsch L., Kruft V., Schmitz U.K., Braun H.P. New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J. 1996;9:357–368. doi: 10.1046/j.1365-313X.1996.09030357.x. PubMed DOI

Zerbetto E., Vergani L., Dabbeni-Sala F. Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels. Electrophoresis. 1997;18:2059–2064. doi: 10.1002/elps.1150181131. PubMed DOI

Shägger H., Von Jagow G. Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987;166:368–379. doi: 10.1016/0003-2697(87)90587-2. PubMed DOI

Jungblut P.R., Seifert R. Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells. J. Biochem. Biophys. Methods. 1990;21:47–58. doi: 10.1016/0165-022X(90)90044-D. PubMed DOI

Savitzky A., Golay M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964;36:1627–1639. doi: 10.1021/ac60214a047. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...