Rifampicin Does not Significantly Affect the Expression of Small Heterodimer Partner in Primary Human Hepatocytes

. 2012 ; 3 () : 1. [epub] 20120119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid22291651

The small/short heterodimer partner (SHP, NR0B2) is a nuclear receptor corepressor lacking a DNA binding domain. SHP is induced by bile acid-activated farnesoid X receptor (FXR) resulting in CYP7A1 gene suppression. In contrast, Pregnane X receptor (PXR) activation by its ligands was recently suggested to inhibit SHP gene transactivation to maximize the induction of PXR target genes. However, there are also conflicting reports in literature whether PXR or rodent Pxr activation down-regulates SHP/Shp expression. Moreover, the PXR-mediated regulation of the SHP gene has been studied only at the SHP mRNA and transactivation (gene reporter assay) levels. In this study, we studied the effect of rifampicin, a prototype PXR ligand, on SHP mRNA, and protein expression in three primary human hepatocyte cultures. We found that SHP mRNA is not systematically down-regulated in hepatocyte in culture after 24 h treatment with rifampicin. Consistently, we did not observe down-regulation of SHP protein in primary human hepatocytes after 24 and 48 h of incubation with rifampicin. We can conclude that although we observed slight down-regulation of SHP mRNA and protein in several hepatocyte preparations, the phenomenon is unlikely critical for PXR-mediated induction of its target genes.

Zobrazit více v PubMed

Bachleda P., Vrzal R., Pivnicka J., Cvek B., Dvorak Z. (2009). Examination of zolpidem effects on AhR- and PXR-dependent expression of drug-metabolizing cytochromes P450 in primary cultures of human hepatocytes. Toxicol. Lett. 191, 74–7810.1016/j.toxlet.2009.08.009 PubMed DOI

Bailey I., Gibson G. G., Plant K., Graham M., Plant N. (2011). A PXR-mediated negative feedback loop attenuates the expression of CYP3A in response to the PXR agonist pregnenalone-16alpha-carbonitrile. PLoS ONE 6, e16703.10.1371/journal.pone.0016703 PubMed DOI PMC

Bavner A., Sanyal S., Gustafsson J. A., Treuter E. (2005). Transcriptional corepression by SHP: molecular mechanisms and physiological consequences. Trends Endocrinol. Metab. 16, 478–48810.1016/j.tem.2005.10.005 PubMed DOI

Biswas A., Mani S., Redinbo M. R., Krasowski M. D., Li H., Ekins S. (2009). Elucidating the ‘Jekyll and Hyde’ nature of PXR: the case for discovering antagonists or allosteric antagonists. Pharm. Res. 26, 1807–181510.1007/s11095-009-9901-7 PubMed DOI PMC

Cerveny L., Svecova L., Anzenbacherova E., Vrzal R., Staud F., Dvorak Z., Ulrichova J., Anzenbacher P., Pavek P. (2007). Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab. Dispos. 35, 1032–104110.1124/dmd.106.014456 PubMed DOI

Dvorak Z., Vrzal R., Starha P., Klanicova A., Travnicek Z. (2010). Effects of dinuclear copper(II) complexes with 6-(benzylamino)purine derivatives on AhR and PXR dependent expression of cytochromes P450 CYP1A2 and CYP3A4 genes in primary cultures of human hepatocytes. Toxicol. In vitro 24, 425–42910.1016/j.tiv.2009.10.012 PubMed DOI

Goodwin B., Hodgson E., Liddle C. (1999). The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 56, 1329–1339 PubMed

Goodwin B., Jones S. A., Price R. R., Watson M. A., McKee D. D., Moore L. B., Galardi C., Wilson J. G., Lewis M. C., Roth M. E., Maloney P. R., Willson T. M., Kliewer S. A. (2000). A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–52610.1016/S1097-2765(00)00051-4 PubMed DOI

Guzelian J., Barwick J. L., Hunter L., Phang T. L., Quattrochi L. C., Guzelian P. S. (2006). Identification of genes controlled by the pregnane X receptor by microarray analysis of mRNAs from pregnenolone 16alpha-carbonitrile-treated rats. Toxicol. Sci. 94, 379–38710.1093/toxsci/kfl116 PubMed DOI PMC

Hariparsad N., Chu X., Yabut J., Labhart P., Hartley D. P., Dai X., Evers R. (2009). Identification of pregnane-X receptor target genes and coactivator and corepressor binding to promoter elements in human hepatocytes. Nucleic Acids Res. 37, 1160–117310.1093/nar/gkn1047 PubMed DOI PMC

Hartley D. P., Dai X., He Y. D., Carlini E. J., Wang B., Huskey S. E., Ulrich R. G., Rushmore T. H., Evers R., Evans D. C. (2004). Activators of the rat pregnane X receptor differentially modulate hepatic and intestinal gene expression. Mol. Pharmacol. 65, 1159–117110.1124/mol.65.5.1159 PubMed DOI

Li A. P., Kaminski D. L., Rasmussen A. (1995). Substrates of human hepatic cytochrome P450 3A4. Toxicology 104, 1–810.1016/0300-483X(95)03117-X PubMed DOI

Li T., Chiang J. Y. (2005). Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G74–G8410.1152/ajpgi.00170.2004 PubMed DOI

Li T., Chiang J. Y. (2006). Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and suppression of small heterodimer partner gene expression. Drug Metab. Dispos. 34, 756–76410.1124/dmd.105.007575 PubMed DOI PMC

Lu T. T., Makishima M., Repa J. J., Schoonjans K., Kerr T. A., Auwerx J., Mangelsdorf D. J. (2000). Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6, 507–51510.1016/S1097-2765(00)00050-2 PubMed DOI

Martinez-Jimenez C. P., Jover R., Donato M. T., Castell J. V., Gomez-Lechon M. J. (2007). Transcriptional regulation and expression of CYP3A4 in hepatocytes. Curr. Drug Metab. 8, 185–19410.2174/138920007779815986 PubMed DOI

Ourlin J. C., Lasserre F., Pineau T., Fabre J. M., Sa-Cunha A., Maurel P., Vilarem M. J., Pascussi J. M. (2003). The small heterodimer partner interacts with the pregnane X receptor and represses its transcriptional activity. Mol. Endocrinol. 17, 1693–170310.1210/me.2002-0383 PubMed DOI

Pavek P., Cerveny L., Svecova L., Brysch M., Libra A., Vrzal R., Nachtigal P., Staud F., Ulrichova J., Fendrich Z., Dvorak Z. (2007). Examination of glucocorticoid receptor alpha-mediated transcriptional regulation of P-glycoprotein, CYP3A4, and CYP2C9 genes in placental trophoblast cell lines. Placenta 28, 1004–101110.1016/j.placenta.2007.05.001 PubMed DOI

Pavek P., Dvorak Z. (2008). Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr. Drug Metab. 9, 129–14310.2174/138920008783571774 PubMed DOI

Pavek P., Pospechova K., Svecova L., Syrova Z., Stejskalova L., Blazkova J., Dvorak Z., Blahos J. (2010). Intestinal cell-specific vitamin D receptor (VDR)-mediated transcriptional regulation of CYP3A4 gene. Biochem. Pharmacol. 79, 277–28710.1016/j.bcp.2009.08.017 PubMed DOI

Pospechova K., Rozehnal V., Stejskalova L., Vrzal R., Pospisilova N., Jamborova G., May K., Siegmund W., Dvorak Z., Nachtigal P., Semecky V., Pavek P. (2009). Expression and activity of vitamin D receptor in the human placenta and in choriocarcinoma BeWo and JEG-3 cell lines. Mol. Cell. Endocrinol. 299, 178–18710.1016/j.mce.2008.12.003 PubMed DOI

Rosenfeld J. M., Vargas R., Jr., Xie W., Evans R. M. (2003). Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol. Endocrinol. 17, 1268–128210.1210/me.2002-0421 PubMed DOI

Seol W., Choi H. S., Moore D. D. (1996). An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272, 1336–133910.1126/science.272.5266.1336 PubMed DOI

Svecova L., Vrzal R., Burysek L., Anzenbacherova E., Cerveny L., Grim J., Trejtnar F., Kunes J., Pour M., Staud F., Anzenbacher P., Dvorak Z., Pavek P. (2008). Azole antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression. Drug Metab. Dispos. 36, 339–34810.1124/dmd.107.018341 PubMed DOI

Tirona R. G., Kim R. B. (2005). Nuclear receptors and drug disposition gene regulation. J. Pharm. Sci. 94, 1169–118610.1002/jps.20324 PubMed DOI

Wang L., Lee Y. K., Bundman D., Han Y., Thevananther S., Kim C. S., Chua S. S., Wei P., Heyman R. A., Karin M., Moore D. D. (2002). Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell 2, 721–73110.1016/S1534-5807(02)00153-3 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...