Comparison of Different Electrocardiography with Vectorcardiography Transformations

. 2019 Jul 11 ; 19 (14) : . [epub] 20190711

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31336798

Grantová podpora
Project No. SP2019/85 and SP2019/118 Ministry of Education of the Czech Republic
project number CZ.02.1.01/0.0/0.0/16_019/0000867 European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project
CZ.02.1.01/0.0/0.0/17_049/0008425 European Regional Development Fund in A Research Platform focused on Industry 4.0 and Robotics in Ostrava project

This paper deals with transformations from electrocardiographic (ECG) to vectorcardiographic (VCG) leads. VCG provides better sensitivity, for example for the detection of myocardial infarction, ischemia, and hypertrophy. However, in clinical practice, measurement of VCG is not usually used because it requires additional electrodes placed on the patient's body. Instead, mathematical transformations are used for deriving VCG from 12-leads ECG. In this work, Kors quasi-orthogonal transformation, inverse Dower transformation, Kors regression transformation, and linear regression-based transformations for deriving P wave (PLSV) and QRS complex (QLSV) are implemented and compared. These transformation methods were not yet compared before, so we have selected them for this paper. Transformation methods were compared for the data from the Physikalisch-Technische Bundesanstalt (PTB) database and their accuracy was evaluated using a mean squared error (MSE) and a correlation coefficient (R) between the derived and directly measured Frank's leads. Based on the statistical analysis, Kors regression transformation was significantly more accurate for the derivation of the X and Y leads than the others. For the Z lead, there were no statistically significant differences in the medians between Kors regression transformation and the PLSV and QLSV methods. This paper thoroughly compared multiple VCG transformation methods to conventional VCG Frank's orthogonal lead system, used in clinical practice.

Zobrazit více v PubMed

Rubel P., Benhadid I., Fayn J. Quantitative assessment of eight different methods for synthesizing Frank VCGs from simultaneously recorded standard ECG leads. J. Electrocardiol. 1991;24:197–202. doi: 10.1016/S0022-0736(10)80045-7. PubMed DOI

Winsor T. Primer of Vectorcardiography. Lea & Febiger; Philadelphia, PA, USA: 1972.

Levkov C.L. Orthogonal electrocardiogram derived from the limb and chest electrodes of the conventional 12-lead system. Med. Biol. Eng. Comput. 1987;25:155. doi: 10.1007/BF02442844. PubMed DOI

Edenbrandt L., Houston A., Macfarlane P.W. Vectorcardiograms synthesized from 12-lead ECGs: A new method applied in 1792 healthy children. Pediatr. Cardiol. 1994;15:21–26. doi: 10.1007/BF00797001. PubMed DOI

Lingman M., Hartford M., Karlsson T., Herlitz J., Rubulis A., Caidahl K., Bergfeldt L. Transient repolarization alterations dominate the initial phase of an acute anterior infarction—A vectorcardiography study. J. Electrocardiol. 2014;47:478–485. doi: 10.1016/j.jelectrocard.2014.04.017. PubMed DOI

Sederholm M. The origin of monitoring of acute myocardial infarction with continuous vectorcardiography. J. Electrocardiol. 2014;47:418–424. doi: 10.1016/j.jelectrocard.2014.04.002. PubMed DOI

Cortez D., Bos J.M., Ackerman M.J. Vectorcardiography identifies patients with electrocardiographically concealed long QT syndrome. Heart Rhythm. 2017;14:894–899. doi: 10.1016/j.hrthm.2017.03.003. PubMed DOI

Macfarlane P.W., Edenbrandt L., Pahlm O. 12-Lead Vectorcardiography. Butterworth-Heinemann; Oxford, UK: 1995.

Guillem M.S., Sahakian A.V., Swiryn S. Derivation of orthogonal leads from the 12-lead ECG. Accuracy of a single transform for the derivation of atrial and ventricular waves; Proceedings of the 2006 Computers in Cardiology; Valencia, Spain. 17–20 September 2006; pp. 249–252.

Hyttinen J.A., Viik J.J., Eskola H., Malmivuo J.A. Optimization and comparison of derived Frank VECG lead systems employing an accurate thorax model; Proceedings of the Computers in Cardiology 1995; Vienna, Austria. 10–13 September 1995; pp. 385–388.

Malmivuo P., Malmivuo J.A., Plonsey R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press; Oxford, UK: 1995.

Macfarlane P.W., Van Oosterom A., Pahlm O., Kligfield P., Janse M., Camm J. Comprehensive Electrocardiology. Springer Science Business Media; Berlin, Germany: 2010.

McFee R., Parungao A. An orthogonal lead system for clinical electrocardiography. Am. Heart J. 1961;62:93–100. doi: 10.1016/0002-8703(61)90488-4. DOI

Simonson E., Schmitt O.H. Present status of vectorcardiography. AMA Arch. Int. Med. 1955;96:574–590. PubMed

Malmivuo J.A. The SVEC III vectorcardiographic lead system. IEEE Eng. Med. Biol. Mag. 2004;23:47–51. doi: 10.1109/MEMB.2004.1378633. PubMed DOI

Kudaiberdiev Z. Vectorcardiographic assessment of acute hypoxia effects in pulmonary hypertension due to chronic bronchitis. J. Electrocardiol. 2007;40:S64. doi: 10.1016/j.jelectrocard.2007.03.062. PubMed DOI

Fischmann E.J., Elliott B.J. Experimental comparison of “parallel grid leads” with simple bipolar, and the SVEC-III, Frank, and McFee-Parungao systems. I. Sagittal leads. Am. Heart J. 1964;67:792–803. doi: 10.1016/0002-8703(64)90180-2. PubMed DOI

Kors J.A., Van Herpen G., Sittig A.C., Van Bemmel J.H. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: Diagnostic comparison of different methods. Eur. Heart J. 1990;11:1083–1092. doi: 10.1093/oxfordjournals.eurheartj.a059647. PubMed DOI

Bjerle P., Arvedson O. Comparison of Frank vectorcardiogram with two different vectorcardiograms derived from conventional ECG-leads. Proc. Eng. Found. 1986;11:13–26.

van Bemmel J.H., Kors J.A., van Herpen G. Combination of diagnostic classifications from ECG and VCG computer interpretations. J. Electrocardiol. 1992;25:126–130. doi: 10.1016/0022-0736(92)90078-E. PubMed DOI

Edenbrandt L., Pahlm O. Vectorcardiogram synthesized from a 12-lead ECG: Superiority of the inverse Dower matrix. J. Electrocardiol. 1988;21:361–367. doi: 10.1016/0022-0736(88)90113-6. PubMed DOI

Schreck D.M., Fishberg R.D. Derivation of the 12-lead electrocardiogram and 3-lead vectorcardiogram. Am. J. Emerg. Med. 2013;31:1183–1190. doi: 10.1016/j.ajem.2013.04.037. PubMed DOI

Burger H.C., Van Milaan J.B., Den Boer W. Comparison of different systems of vectorcardiography. Br. Heart J. 1952;14:401. doi: 10.1136/hrt.14.3.401. PubMed DOI PMC

Acar B., Koymen H. SVD-based on-line exercise ECG signal orthogonalization. IEEE Trans. Biomed. Eng. 1999;46:311–321. doi: 10.1109/10.748984. PubMed DOI

Dawson D., Yang H., Malshe M., Bukkapatnam S.T., Benjamin B., Komanduri R. Linear affine transformations between 3-lead (Frank XYZ leads) vectorcardiogram and 12-lead electrocardiogram signals. J. Electrocardiol. 2009;42:622–630. doi: 10.1016/j.jelectrocard.2009.05.007. PubMed DOI

Maheshwari S., Acharyya A., Schiariti M., Puddu P.E. Frank vectorcardiographic system from standard 12 lead ECG: An effort to enhance cardiovascular diagnosis. J. Electrocardiol. 2016;49:231–242. doi: 10.1016/j.jelectrocard.2015.12.008. PubMed DOI

Vozda M., Peterek T., Cerny M. Novel Method for Deriving Vectorcardiographic Leads Based on Artificial Neural Networks; Proceedings of the 41st International Congress on Electrocardiol; Bratislava, Slovakia. 4–7 June 2014.

Guillem M.S., Climent A.M., Bollmann A., Husser D., Millet J., Castells F. Limitations of Dower’s inverse transform for the study of atrial loops during atrial fibrillation. Pacing Clin. Electrophysiol. 2009;32:972–980. doi: 10.1111/j.1540-8159.2009.02426.x. PubMed DOI

Cortez D.L., Schlegel T.T. When deriving the spatial QRS-T angle from the 12-lead electrocardiogram, which transform is more Frank: Regression or inverse Dower? J. Electrocardiol. 2010;43:302–309. doi: 10.1016/j.jelectrocard.2010.03.010. PubMed DOI

Cortez D., Sharma N., Devers C., Devers E., Schlegel T.T. Visual transform applications for estimating the spatial QRS–T angle from the conventional 12-lead ECG: Kors is still most Frank. J. Electrocardiol. 2014;47:12–19. doi: 10.1016/j.jelectrocard.2013.09.003. PubMed DOI

Bousseljot R., Kreiseler D., Schnabel A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB uber das Internet. Biomed. Tech. Biomed. Eng. 1995;40:317–318. doi: 10.1515/bmte.1995.40.s1.317. DOI

Laguna P., Mark R.G., Goldberg A., Moody G.B. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG; Proceedings of the Computers in Cardiology 1997; Lund, Sweden. 7–10 September 1997; pp. 673–676.

Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101:e215–e220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI

Ahlgren P., Jarneving B., Rousseau R. Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. J. Am. Soc. Inf. Sci. Technol. 2003;54:550–560. doi: 10.1002/asi.10242. DOI

Wang Z., Bovik A.C. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 2009;26:98–117. doi: 10.1109/MSP.2008.930649. DOI

Andel J. Fundamentals of Mathematical Statistics. SHTL; Prague, Czech Republic: 1978.

Bris R., Litschmannova M. Statistics I. For Combined and Distance Study. VSB–TU Ostrava; Ostrava, Czech Republic: 2004.

Buendia-Fuentes F., Arnau-Vives M.A., Arnau-Vives A., Jimenez-Jimenez Y., Rueda-Soriano J., Zorio-Grima E., Osa-Sáez A., Martínez-Dolz L.V., Almenar-Bonet L., Palencia-Perez M.A. High-bandpass filters in electrocardiography: Source of error in the interpretation of the ST segment. ISRN Cardiol. 2012;2012:706217. doi: 10.5402/2012/706217. PubMed DOI PMC

Venkatachalam K.L., Herbrandson J.E., Asirvatham S.J. Signals and signal processing for the electrophysiologist: Part I: Electrogram acquisition. Circ. Arrhythm. Electrophysiol. 2011;4:965–973. doi: 10.1161/CIRCEP.111.964304. PubMed DOI

Venkatachalam K.L., Herbrandson J.E., Asirvatham S.J. Signals and signal processing for the electrophysiologist: Part II: Signal processing and artifact. Circ. Arrhythm. Electrophysiol. 2011;4:974–981. doi: 10.1161/CIRCEP.111.964973. PubMed DOI

Choudhuri S., Ghosal T., Goswami D.P., Sengupta A. Planarity of the spatial qrs loop of vectorcardiogram is a crucial diagnostic and prognostic parameter in acute myocardial infarction. Med. Hypotheses. 2019;130:109251. doi: 10.1016/j.mehy.2019.109251. PubMed DOI

Perez-Riera A.R., Barbosa-Barros R., Daminello-Raimundo R., de Abreu L.C., de Almeida M.C., Rankinen J., Baeub Soler F., Nikus K. Re-evaluating the electro-vectorcardiographic criteria for left bundle branch block. Ann. Noninvasive Electrocardiol. 2019:e12644. doi: 10.1111/anec.12644. PubMed DOI PMC

Prabhakararao E., Dandapat S. A Weighted SVM Based Approach for Automatic Detection of Posterior Myocardial Infarction Using VCG Signals; Proceedings of the 2019 National Conference on Communications (NCC); Bangalore, India. 20–23 February 2019; pp. 1–6.

Costa C.M., Silva I.S., de Sousa R.D., Hortegal R.A., Regis C.D.M. The association between reconstructed phase space and Artificial Neural Networks for vectorcardiographic recognition of myocardial infarction. J. Electrocardiol. 2018;51:443–449. doi: 10.1016/j.jelectrocard.2018.02.001. PubMed DOI

Sadhukhan D., Datta J., Pal S., Mitra M. Automated Identification of Myocardial Infarction Using a Single Vectorcardiographic Feature; Proceedings of the International Conference on Modelling and Simulation; London, UK. 28–29 September 2017; pp. 641–651.

Tripathy R.K., Dandapat S. Detection of myocardial infarction from vectorcardiogram using relevance vector machine. Signal Image Video Process. 2017;11:1139–1146. doi: 10.1007/s11760-017-1068-9. DOI

Bonomini M.P., Ingallina F.J., Barone V., Valentinuzzi M.E., Arini P.D. Comparison of electrocardiographic and vectorcardiographic planes on a set of left ventricular hypertrophy patients; Proceedings of the VI Latin American Congress on Biomedical Engineering CLAIB 2014; Parana, Argentina. 29–31 October 2014; pp. 564–567.

Cortez D., Schlegel T.T., Ackerman M.J., Bos J.M. ECG-derived spatial QRS-T angle is strongly associated with hypertrophic cardiomyopathy. J. Electrocardiol. 2017;50:195–202. doi: 10.1016/j.jelectrocard.2016.10.001. PubMed DOI

Nikus K., Perez-Riera A.R., Konttila K., Barbosa-Barros R. Electrocardiographic recognition of right ventricular hypertrophy. J. Electrocardiol. 2018;51:46–49. doi: 10.1016/j.jelectrocard.2017.09.004. PubMed DOI

Mather A.N., Maredia N., Plein S. Cardiovascular MR Manual. Springer; Cham, Switzerland: 2015. Ischemic Heart Disease; pp. 371–410.

Cruces P.D., Arini P.D. Quaternion-based study of angular velocity of the cardiac vector during myocardial ischaemia. Int. J. Cardiol. 2017;248:57–63. doi: 10.1016/j.ijcard.2017.06.095. PubMed DOI

Vozda M., Cerny M. Methods for derivation of orthogonal leads from 12-lead electrocardiogram: A review. Biomed. Signal Process. Control. 2015;19:23–34. doi: 10.1016/j.bspc.2015.03.001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...