Comparison of Different Electrocardiography with Vectorcardiography Transformations
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
Project No. SP2019/85 and SP2019/118
Ministry of Education of the Czech Republic
project number CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project
CZ.02.1.01/0.0/0.0/17_049/0008425
European Regional Development Fund in A Research Platform focused on Industry 4.0 and Robotics in Ostrava project
PubMed
31336798
PubMed Central
PMC6678609
DOI
10.3390/s19143072
PII: s19143072
Knihovny.cz E-zdroje
- Klíčová slova
- Frank’s leads, Kors transformation, dower transformation, electrocardiography, least-squares fit method, quasi-orthogonal leads, transformation, vectorcardiography,
- MeSH
- databáze faktografické MeSH
- diagnóza počítačová metody MeSH
- elektrokardiografie metody MeSH
- lidé MeSH
- lineární modely MeSH
- matematické výpočty počítačové MeSH
- nemoci srdce diagnóza MeSH
- počítačové zpracování signálu * MeSH
- vektorkardiografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
This paper deals with transformations from electrocardiographic (ECG) to vectorcardiographic (VCG) leads. VCG provides better sensitivity, for example for the detection of myocardial infarction, ischemia, and hypertrophy. However, in clinical practice, measurement of VCG is not usually used because it requires additional electrodes placed on the patient's body. Instead, mathematical transformations are used for deriving VCG from 12-leads ECG. In this work, Kors quasi-orthogonal transformation, inverse Dower transformation, Kors regression transformation, and linear regression-based transformations for deriving P wave (PLSV) and QRS complex (QLSV) are implemented and compared. These transformation methods were not yet compared before, so we have selected them for this paper. Transformation methods were compared for the data from the Physikalisch-Technische Bundesanstalt (PTB) database and their accuracy was evaluated using a mean squared error (MSE) and a correlation coefficient (R) between the derived and directly measured Frank's leads. Based on the statistical analysis, Kors regression transformation was significantly more accurate for the derivation of the X and Y leads than the others. For the Z lead, there were no statistically significant differences in the medians between Kors regression transformation and the PLSV and QLSV methods. This paper thoroughly compared multiple VCG transformation methods to conventional VCG Frank's orthogonal lead system, used in clinical practice.
Zobrazit více v PubMed
Rubel P., Benhadid I., Fayn J. Quantitative assessment of eight different methods for synthesizing Frank VCGs from simultaneously recorded standard ECG leads. J. Electrocardiol. 1991;24:197–202. doi: 10.1016/S0022-0736(10)80045-7. PubMed DOI
Winsor T. Primer of Vectorcardiography. Lea & Febiger; Philadelphia, PA, USA: 1972.
Levkov C.L. Orthogonal electrocardiogram derived from the limb and chest electrodes of the conventional 12-lead system. Med. Biol. Eng. Comput. 1987;25:155. doi: 10.1007/BF02442844. PubMed DOI
Edenbrandt L., Houston A., Macfarlane P.W. Vectorcardiograms synthesized from 12-lead ECGs: A new method applied in 1792 healthy children. Pediatr. Cardiol. 1994;15:21–26. doi: 10.1007/BF00797001. PubMed DOI
Lingman M., Hartford M., Karlsson T., Herlitz J., Rubulis A., Caidahl K., Bergfeldt L. Transient repolarization alterations dominate the initial phase of an acute anterior infarction—A vectorcardiography study. J. Electrocardiol. 2014;47:478–485. doi: 10.1016/j.jelectrocard.2014.04.017. PubMed DOI
Sederholm M. The origin of monitoring of acute myocardial infarction with continuous vectorcardiography. J. Electrocardiol. 2014;47:418–424. doi: 10.1016/j.jelectrocard.2014.04.002. PubMed DOI
Cortez D., Bos J.M., Ackerman M.J. Vectorcardiography identifies patients with electrocardiographically concealed long QT syndrome. Heart Rhythm. 2017;14:894–899. doi: 10.1016/j.hrthm.2017.03.003. PubMed DOI
Macfarlane P.W., Edenbrandt L., Pahlm O. 12-Lead Vectorcardiography. Butterworth-Heinemann; Oxford, UK: 1995.
Guillem M.S., Sahakian A.V., Swiryn S. Derivation of orthogonal leads from the 12-lead ECG. Accuracy of a single transform for the derivation of atrial and ventricular waves; Proceedings of the 2006 Computers in Cardiology; Valencia, Spain. 17–20 September 2006; pp. 249–252.
Hyttinen J.A., Viik J.J., Eskola H., Malmivuo J.A. Optimization and comparison of derived Frank VECG lead systems employing an accurate thorax model; Proceedings of the Computers in Cardiology 1995; Vienna, Austria. 10–13 September 1995; pp. 385–388.
Malmivuo P., Malmivuo J.A., Plonsey R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press; Oxford, UK: 1995.
Macfarlane P.W., Van Oosterom A., Pahlm O., Kligfield P., Janse M., Camm J. Comprehensive Electrocardiology. Springer Science Business Media; Berlin, Germany: 2010.
McFee R., Parungao A. An orthogonal lead system for clinical electrocardiography. Am. Heart J. 1961;62:93–100. doi: 10.1016/0002-8703(61)90488-4. DOI
Simonson E., Schmitt O.H. Present status of vectorcardiography. AMA Arch. Int. Med. 1955;96:574–590. PubMed
Malmivuo J.A. The SVEC III vectorcardiographic lead system. IEEE Eng. Med. Biol. Mag. 2004;23:47–51. doi: 10.1109/MEMB.2004.1378633. PubMed DOI
Kudaiberdiev Z. Vectorcardiographic assessment of acute hypoxia effects in pulmonary hypertension due to chronic bronchitis. J. Electrocardiol. 2007;40:S64. doi: 10.1016/j.jelectrocard.2007.03.062. PubMed DOI
Fischmann E.J., Elliott B.J. Experimental comparison of “parallel grid leads” with simple bipolar, and the SVEC-III, Frank, and McFee-Parungao systems. I. Sagittal leads. Am. Heart J. 1964;67:792–803. doi: 10.1016/0002-8703(64)90180-2. PubMed DOI
Kors J.A., Van Herpen G., Sittig A.C., Van Bemmel J.H. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: Diagnostic comparison of different methods. Eur. Heart J. 1990;11:1083–1092. doi: 10.1093/oxfordjournals.eurheartj.a059647. PubMed DOI
Bjerle P., Arvedson O. Comparison of Frank vectorcardiogram with two different vectorcardiograms derived from conventional ECG-leads. Proc. Eng. Found. 1986;11:13–26.
van Bemmel J.H., Kors J.A., van Herpen G. Combination of diagnostic classifications from ECG and VCG computer interpretations. J. Electrocardiol. 1992;25:126–130. doi: 10.1016/0022-0736(92)90078-E. PubMed DOI
Edenbrandt L., Pahlm O. Vectorcardiogram synthesized from a 12-lead ECG: Superiority of the inverse Dower matrix. J. Electrocardiol. 1988;21:361–367. doi: 10.1016/0022-0736(88)90113-6. PubMed DOI
Schreck D.M., Fishberg R.D. Derivation of the 12-lead electrocardiogram and 3-lead vectorcardiogram. Am. J. Emerg. Med. 2013;31:1183–1190. doi: 10.1016/j.ajem.2013.04.037. PubMed DOI
Burger H.C., Van Milaan J.B., Den Boer W. Comparison of different systems of vectorcardiography. Br. Heart J. 1952;14:401. doi: 10.1136/hrt.14.3.401. PubMed DOI PMC
Acar B., Koymen H. SVD-based on-line exercise ECG signal orthogonalization. IEEE Trans. Biomed. Eng. 1999;46:311–321. doi: 10.1109/10.748984. PubMed DOI
Dawson D., Yang H., Malshe M., Bukkapatnam S.T., Benjamin B., Komanduri R. Linear affine transformations between 3-lead (Frank XYZ leads) vectorcardiogram and 12-lead electrocardiogram signals. J. Electrocardiol. 2009;42:622–630. doi: 10.1016/j.jelectrocard.2009.05.007. PubMed DOI
Maheshwari S., Acharyya A., Schiariti M., Puddu P.E. Frank vectorcardiographic system from standard 12 lead ECG: An effort to enhance cardiovascular diagnosis. J. Electrocardiol. 2016;49:231–242. doi: 10.1016/j.jelectrocard.2015.12.008. PubMed DOI
Vozda M., Peterek T., Cerny M. Novel Method for Deriving Vectorcardiographic Leads Based on Artificial Neural Networks; Proceedings of the 41st International Congress on Electrocardiol; Bratislava, Slovakia. 4–7 June 2014.
Guillem M.S., Climent A.M., Bollmann A., Husser D., Millet J., Castells F. Limitations of Dower’s inverse transform for the study of atrial loops during atrial fibrillation. Pacing Clin. Electrophysiol. 2009;32:972–980. doi: 10.1111/j.1540-8159.2009.02426.x. PubMed DOI
Cortez D.L., Schlegel T.T. When deriving the spatial QRS-T angle from the 12-lead electrocardiogram, which transform is more Frank: Regression or inverse Dower? J. Electrocardiol. 2010;43:302–309. doi: 10.1016/j.jelectrocard.2010.03.010. PubMed DOI
Cortez D., Sharma N., Devers C., Devers E., Schlegel T.T. Visual transform applications for estimating the spatial QRS–T angle from the conventional 12-lead ECG: Kors is still most Frank. J. Electrocardiol. 2014;47:12–19. doi: 10.1016/j.jelectrocard.2013.09.003. PubMed DOI
Bousseljot R., Kreiseler D., Schnabel A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB uber das Internet. Biomed. Tech. Biomed. Eng. 1995;40:317–318. doi: 10.1515/bmte.1995.40.s1.317. DOI
Laguna P., Mark R.G., Goldberg A., Moody G.B. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG; Proceedings of the Computers in Cardiology 1997; Lund, Sweden. 7–10 September 1997; pp. 673–676.
Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101:e215–e220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI
Ahlgren P., Jarneving B., Rousseau R. Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. J. Am. Soc. Inf. Sci. Technol. 2003;54:550–560. doi: 10.1002/asi.10242. DOI
Wang Z., Bovik A.C. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 2009;26:98–117. doi: 10.1109/MSP.2008.930649. DOI
Andel J. Fundamentals of Mathematical Statistics. SHTL; Prague, Czech Republic: 1978.
Bris R., Litschmannova M. Statistics I. For Combined and Distance Study. VSB–TU Ostrava; Ostrava, Czech Republic: 2004.
Buendia-Fuentes F., Arnau-Vives M.A., Arnau-Vives A., Jimenez-Jimenez Y., Rueda-Soriano J., Zorio-Grima E., Osa-Sáez A., Martínez-Dolz L.V., Almenar-Bonet L., Palencia-Perez M.A. High-bandpass filters in electrocardiography: Source of error in the interpretation of the ST segment. ISRN Cardiol. 2012;2012:706217. doi: 10.5402/2012/706217. PubMed DOI PMC
Venkatachalam K.L., Herbrandson J.E., Asirvatham S.J. Signals and signal processing for the electrophysiologist: Part I: Electrogram acquisition. Circ. Arrhythm. Electrophysiol. 2011;4:965–973. doi: 10.1161/CIRCEP.111.964304. PubMed DOI
Venkatachalam K.L., Herbrandson J.E., Asirvatham S.J. Signals and signal processing for the electrophysiologist: Part II: Signal processing and artifact. Circ. Arrhythm. Electrophysiol. 2011;4:974–981. doi: 10.1161/CIRCEP.111.964973. PubMed DOI
Choudhuri S., Ghosal T., Goswami D.P., Sengupta A. Planarity of the spatial qrs loop of vectorcardiogram is a crucial diagnostic and prognostic parameter in acute myocardial infarction. Med. Hypotheses. 2019;130:109251. doi: 10.1016/j.mehy.2019.109251. PubMed DOI
Perez-Riera A.R., Barbosa-Barros R., Daminello-Raimundo R., de Abreu L.C., de Almeida M.C., Rankinen J., Baeub Soler F., Nikus K. Re-evaluating the electro-vectorcardiographic criteria for left bundle branch block. Ann. Noninvasive Electrocardiol. 2019:e12644. doi: 10.1111/anec.12644. PubMed DOI PMC
Prabhakararao E., Dandapat S. A Weighted SVM Based Approach for Automatic Detection of Posterior Myocardial Infarction Using VCG Signals; Proceedings of the 2019 National Conference on Communications (NCC); Bangalore, India. 20–23 February 2019; pp. 1–6.
Costa C.M., Silva I.S., de Sousa R.D., Hortegal R.A., Regis C.D.M. The association between reconstructed phase space and Artificial Neural Networks for vectorcardiographic recognition of myocardial infarction. J. Electrocardiol. 2018;51:443–449. doi: 10.1016/j.jelectrocard.2018.02.001. PubMed DOI
Sadhukhan D., Datta J., Pal S., Mitra M. Automated Identification of Myocardial Infarction Using a Single Vectorcardiographic Feature; Proceedings of the International Conference on Modelling and Simulation; London, UK. 28–29 September 2017; pp. 641–651.
Tripathy R.K., Dandapat S. Detection of myocardial infarction from vectorcardiogram using relevance vector machine. Signal Image Video Process. 2017;11:1139–1146. doi: 10.1007/s11760-017-1068-9. DOI
Bonomini M.P., Ingallina F.J., Barone V., Valentinuzzi M.E., Arini P.D. Comparison of electrocardiographic and vectorcardiographic planes on a set of left ventricular hypertrophy patients; Proceedings of the VI Latin American Congress on Biomedical Engineering CLAIB 2014; Parana, Argentina. 29–31 October 2014; pp. 564–567.
Cortez D., Schlegel T.T., Ackerman M.J., Bos J.M. ECG-derived spatial QRS-T angle is strongly associated with hypertrophic cardiomyopathy. J. Electrocardiol. 2017;50:195–202. doi: 10.1016/j.jelectrocard.2016.10.001. PubMed DOI
Nikus K., Perez-Riera A.R., Konttila K., Barbosa-Barros R. Electrocardiographic recognition of right ventricular hypertrophy. J. Electrocardiol. 2018;51:46–49. doi: 10.1016/j.jelectrocard.2017.09.004. PubMed DOI
Mather A.N., Maredia N., Plein S. Cardiovascular MR Manual. Springer; Cham, Switzerland: 2015. Ischemic Heart Disease; pp. 371–410.
Cruces P.D., Arini P.D. Quaternion-based study of angular velocity of the cardiac vector during myocardial ischaemia. Int. J. Cardiol. 2017;248:57–63. doi: 10.1016/j.ijcard.2017.06.095. PubMed DOI
Vozda M., Cerny M. Methods for derivation of orthogonal leads from 12-lead electrocardiogram: A review. Biomed. Signal Process. Control. 2015;19:23–34. doi: 10.1016/j.bspc.2015.03.001. DOI
Review of Processing Pathological Vectorcardiographic Records for the Detection of Heart Disease