Expression dynamics of pregnane X receptor-controlled genes in 3D primary human hepatocyte spheroids
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
No. CZ.02.1.01/0.0/0.0/16_019/0000841
efsa-cdn
No. 19-14497S
grantová agentura české republiky
No. 4EU+/20/F1/9
charles university grant
No. 4EU+/21/F1/05
charles university grant
PubMed
34689256
DOI
10.1007/s00204-021-03177-y
PII: 10.1007/s00204-021-03177-y
Knihovny.cz E-zdroje
- Klíčová slova
- Gene expression dynamics, Mathematical modelling, Pregnane X receptor, Primary human hepatocytes, Rifampicin, Spheroids,
- MeSH
- cytochrom P-450 CYP3A metabolismus MeSH
- hepatocyty metabolismus MeSH
- lidé MeSH
- pregnanový X receptor genetika metabolismus MeSH
- receptory cytoplazmatické a nukleární metabolismus MeSH
- steroidní receptory * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytochrom P-450 CYP3A MeSH
- pregnanový X receptor MeSH
- receptory cytoplazmatické a nukleární MeSH
- steroidní receptory * MeSH
The pregnane X receptor (PXR) is a ligand-activated nuclear receptor controlling hepatocyte expression of numerous genes. Although expression changes in xenobiotic-metabolizing, lipogenic, gluconeogenic and bile acid synthetic genes have been described after PXR activation, the temporal dynamics of their expression is largely unknown. Recently, 3D spheroids of primary human hepatocytes (PHHs) have been characterized as the most phenotypically relevant hepatocyte model. We used 3D PHHs to assess time-dependent expression profiles of 12 prototypic PXR-controlled genes in the time course of 168 h of rifampicin treatment (1 or 10 µM). We observed a similar bell-shaped time-induction pattern for xenobiotic-handling genes (CYP3A4, CYP2C9, CYP2B6, and MDR1). However, we observed either biphasic profiles for genes involved in endogenous metabolism (FASN, GLUT2, G6PC, PCK1, and CYP7A1), a decrease for SHP or oscillation for PDK4 and PXR. The rifampicin concentration determined the expression profiles for some genes. Moreover, we calculated half-lives of CYP3A4 and CYP2C9 mRNA under induced or basal conditions and we used a mathematical model to describe PXR-mediated regulation of CYP3A4 expression employing 3D PHHs. The study shows the importance of long-term time-expression profiling of PXR target genes in phenotypically stable 3D PHHs and provides insight into PXR function in liver beyond our knowledge from conventional 2D in vitro models.
Zobrazit více v PubMed
Acocella G (1978) Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet 3(2):108–127. https://doi.org/10.2165/00003088-197803020-00002 PubMed DOI
Arakawa H, Kamioka H, Jomura T et al (2017) Preliminary evaluation of three-dimensional primary human hepatocyte culture system for assay of drug-metabolizing enzyme-inducing potential. Biol Pharm Bull 40(7):967–974. https://doi.org/10.1248/bpb.b16-00885 PubMed DOI
Bell CC, Hendriks DF, Moro SM et al (2016) Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6:25187. https://doi.org/10.1038/srep25187 PubMed DOI PMC
Bell CC, Lauschke VM, Vorrink SU et al (2017) Transcriptional, functional, and mechanistic comparisons of stem cell-derived hepatocytes, HepaRG cells, and three-dimensional human hepatocyte spheroids as predictive in vitro systems for drug-induced liver injury. Drug Metab Dispos 45(4):419–429. https://doi.org/10.1124/dmd.116.074369 PubMed DOI PMC
Chan CYS, Roberts O, Rajoli RKR et al (2018) Derivation of CYP3A4 and CYP2B6 degradation rate constants in primary human hepatocytes: a siRNA-silencing-based approach. Drug Metab Pharmacokinet 33(4):179–187. https://doi.org/10.1016/j.dmpk.2018.01.004 PubMed DOI
Dixit V, Moore A, Tsao H, Hariparsad N (2016) Application of Micropatterned Cocultured hepatocytes to evaluate the inductive potential and degradation rate of major xenobiotic metabolizing enzymes. Drug Metab Dispos 44(2):250–261. https://doi.org/10.1124/dmd.115.067173 PubMed DOI
Faucette SR, Wang H, Hamilton GA et al (2004) Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab Dispos 32(3):348–358. https://doi.org/10.1124/dmd.32.3.348 PubMed DOI
Gerets HH, Tilmant K, Gerin B et al (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 28(2):69–87. https://doi.org/10.1007/s10565-011-9208-4 PubMed DOI PMC
Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530. https://doi.org/10.1007/s00204-013-1078-5 PubMed DOI PMC
Goodwin B, Jones SA, Price RR et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6(3):517–526. https://doi.org/10.1016/s1097-2765(00)00051-4 PubMed DOI
Hakkola J, Rysa J, Hukkanen J (2016) Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochim Biophys Acta 1859(9):1072–1082. https://doi.org/10.1016/j.bbagrm.2016.03.012 PubMed DOI
Hendriks DFG, Vorrink SU, Smutny T et al (2020) Clinically relevant cytochrome P450 3A4 induction mechanisms and drug screening in three-dimensional spheroid cultures of primary human hepatocytes. Clin Pharmacol Ther 108(4):844–855. https://doi.org/10.1002/cpt.1860 PubMed DOI
Hofmann AF (2002) Rifampicin and treatment of cholestatic pruritus. Gut 51(5):756–757. https://doi.org/10.1136/gut.51.5.756 PubMed DOI PMC
Hukkanen J, Hakkola J, Rysa J (2014) Pregnane X receptor (PXR)–a contributor to the diabetes epidemic? Drug Metabol Drug Interact 29(1):3–15. https://doi.org/10.1515/dmdi-2013-0036 PubMed DOI
Ihunnah CA, Jiang M, Xie W (2011) Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta 1812(8):956–963. https://doi.org/10.1016/j.bbadis.2011.01.014 PubMed DOI PMC
Istrate MA, Nussler AK, Eichelbaum M, Burk O (2010) Regulation of CYP3A4 by pregnane X receptor: the role of nuclear receptors competing for response element binding. Biochem Biophys Res Commun 393(4):688–693. https://doi.org/10.1016/j.bbrc.2010.02.058 PubMed DOI
Kandel BA, Thomas M, Winter S et al (2016) Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARalpha in primary human hepatocytes. Biochim Biophys Acta 1859(9):1218–1227. https://doi.org/10.1016/j.bbagrm.2016.03.007 PubMed DOI
Kanebratt KP, Diczfalusy U, Backstrom T et al (2008) Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol. Clin Pharmacol Ther 84(5):589–594. https://doi.org/10.1038/clpt.2008.132 PubMed DOI
Kanebratt KP, Janefeldt A, Vilen L et al (2021) Primary human hepatocyte spheroid model as a 3D in vitro platform for metabolism studies. J Pharm Sci 110(1):422–431. https://doi.org/10.1016/j.xphs.2020.10.043 PubMed DOI
Kenny JR, Ramsden D, Buckley DB et al (2018) Considerations from the Innovation and Quality Induction Working Group in Response to Drug-Drug Interaction Guidances from Regulatory Agencies: Focus on CYP3A4 mRNA In Vitro Response Thresholds, Variability, and Clinical Relevance. Drug Metab Dispos 46(9):1285–1303. https://doi.org/10.1124/dmd.118.081927 PubMed DOI
Kliewer SA, Willson TM (2002) Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J Lipid Res 43(3):359–364 DOI
Kodama S, Moore R, Yamamoto Y, Negishi M (2007) Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochem J 407(3):373–381. https://doi.org/10.1042/BJ20070481 PubMed DOI PMC
Kolodkin A, Sahin N, Phillips A et al (2013) Optimization of stress response through the nuclear receptor-mediated cortisol signalling network. Nat Commun 4:1792. https://doi.org/10.1038/ncomms2799 PubMed DOI
Kozyra M, Johansson I, Nordling A, Ullah S, Lauschke VM, Ingelman-Sundberg M (2018) Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci Rep 8(1):14297. https://doi.org/10.1038/s41598-018-32722-6 PubMed DOI PMC
Lauschke VM, Vorrink SU, Moro SM et al (2016) Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation. Hepatology 64(5):1743–1756. https://doi.org/10.1002/hep.28780 PubMed DOI
Li T, Chiang JY (2005) Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol 288(1):G74-84. https://doi.org/10.1152/ajpgi.00258.2004 PubMed DOI
Li T, Chiang JY (2006) Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and suppression of small heterodimer partner gene expression. Drug Metab Dispos 34(5):756–764. https://doi.org/10.1124/dmd.105.007575 PubMed DOI
Li D, Gaedigk R, Hart SN, Leeder JS, Zhong XB (2012) The role of CYP3A4 mRNA transcript with shortened 3’-untranslated region in hepatocyte differentiation, liver development, and response to drug induction. Mol Pharmacol 81(1):86–96. https://doi.org/10.1124/mol.111.074393 PubMed DOI PMC
Lin W, Wang YM, Chai SC et al (2017) SPA70 is a potent antagonist of human pregnane X receptor. Nat Commun 8(1):741. https://doi.org/10.1038/s41467-017-00780-5 PubMed DOI PMC
Liu YT, Hao HP, Liu CX, Wang GJ, Xie HG (2007) Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 39(4):699–721. https://doi.org/10.1080/03602530701690374 PubMed DOI
Luke NS, DeVito MJ, Shah I, El-Masri HA (2010) Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme induction. Bull Math Biol 72(7):1799–1819. https://doi.org/10.1007/s11538-010-9508-5 PubMed DOI
Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA (2002) Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 62(3):638–646. https://doi.org/10.1124/mol.62.3.638 PubMed DOI
Martin P, Riley R, Back DJ, Owen A (2008) Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br J Pharmacol 153(4):805–819. https://doi.org/10.1038/sj.bjp.0707601 PubMed DOI
Meneses-Lorente G, Pattison C, Guyomard C et al (2007) Utility of long-term cultured human hepatocytes as an in vitro model for cytochrome p450 induction. Drug Metab Dispos 35(2):215–220. https://doi.org/10.1124/dmd.106.009423 PubMed DOI
Moreau A, Teruel C, Beylot M et al (2009) A novel pregnane X receptor and S14-mediated lipogenic pathway in human hepatocyte. Hepatology 49(6):2068–2079. https://doi.org/10.1002/hep.22907 PubMed DOI
Nishimura M, Yoshitsugu H, Naito S, Hiraoka I (2002) Evaluation of gene induction of drug-metabolizing enzymes and transporters in primary culture of human hepatocytes using high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi 122(5):339–361. https://doi.org/10.1248/yakushi.122.339 PubMed DOI
Nishimura M, Koeda A, Suzuki E et al (2006) Regulation of mRNA expression of MDR1, MRP1, MRP2 and MRP3 by prototypical microsomal enzyme inducers in primary cultures of human and rat hepatocytes. Drug Metab Pharmacokinet 21(4):297–307. https://doi.org/10.2133/dmpk.21.297 PubMed DOI
Ohtsuki S, Schaefer O, Kawakami H et al (2012) Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos 40(1):83–92. https://doi.org/10.1124/dmd.111.042259 PubMed DOI
Ourlin JC, Lasserre F, Pineau T et al (2003) The small heterodimer partner interacts with the pregnane X receptor and represses its transcriptional activity. Mol Endocrinol 17(9):1693–1703. https://doi.org/10.1210/me.2002-0383 PubMed DOI
Pavek P, Stejskalova L, Krausova L, Bitman M, Vrzal R, Dvorak Z (2012) Rifampicin does not significantly affect the expression of small heterodimer partner in primary human hepatocytes. Front Pharmacol 3:1. https://doi.org/10.3389/fphar.2012.00001 PubMed DOI PMC
Ramsden D, Zhou J, Tweedie DJ (2015) Determination of a degradation constant for CYP3A4 by direct suppression of mRNA in a novel human hepatocyte model, HepatoPac. Drug Metab Dispos 43(9):1307–1315. https://doi.org/10.1124/dmd.115.065326 PubMed DOI
Raucy JL, Mueller L, Duan K, Allen SW, Strom S, Lasker JM (2002) Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes. J Pharmacol Exp Ther 302(2):475–482. https://doi.org/10.1124/jpet.102.033837 PubMed DOI
Rysa J, Buler M, Savolainen MJ, Ruskoaho H, Hakkola J, Hukkanen J (2013) Pregnane X receptor agonists impair postprandial glucose tolerance. Clin Pharmacol Ther 93(6):556–563. https://doi.org/10.1038/clpt.2013.48 PubMed DOI
Smutny T, Dusek J, Hyrsova L et al (2020) The 3’-untranslated region contributes to the pregnane X receptor (PXR) expression down-regulation by PXR ligands and up-regulation by glucocorticoids. Acta Pharm Sin B 10(1):136–152. https://doi.org/10.1016/j.apsb.2019.09.010 PubMed DOI
Smutny T, Hyrsova L, Braeuning A, Ingelman-Sundberg M, Pavek P (2021) Transcriptional and post-transcriptional regulation of the pregnane X receptor: a rationale for interindividual variability in drug metabolism. Arch Toxicol 95(1):11–25. https://doi.org/10.1007/s00204-020-02916-x PubMed DOI
Stage TB, Damkier P, Christensen MM, Nielsen LB, Hojlund K, Brosen K (2016) Impaired glucose tolerance in healthy men treated with St. John’s Wort. Basic Clin Pharmacol Toxicol 118(3):219–224. https://doi.org/10.1111/bcpt.12486 PubMed DOI
Stott KE, Pertinez H, Sturkenboom MGG et al (2018) Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother 73(9):2305–2313. https://doi.org/10.1093/jac/dky152 PubMed DOI PMC
Tao R, Xiong X, Harris RA, White MF, Dong XC (2013) Genetic inactivation of pyruvate dehydrogenase kinases improves hepatic insulin resistance induced diabetes. PLoS ONE 8(8):e71997. https://doi.org/10.1371/journal.pone.0071997 PubMed DOI PMC
Tebbens JD, Azar M, Friedmann E, Lanzendorfer M, Pavek P (2018) Mathematical models in the description of pregnane X Receptor (PXR)-regulated cytochrome P450 enzyme induction. Int J Mol Sci 19(6):1785. https://doi.org/10.3390/ijms19061785 DOI
Tebbens JD, Matonoha C, Matthios A, Papacek S (2019) On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy. Appl Math 64:253–277. https://doi.org/10.21136/AM.2019.0284-18 DOI
Tolson AH, Wang H (2010) Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 62(13):1238–1249. https://doi.org/10.1016/j.addr.2010.08.006 PubMed DOI PMC
Vorrink SU, Ullah S, Schmidt S et al (2017) Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. FASEB J 31(6):2696–2708. https://doi.org/10.1096/fj.201601375R PubMed DOI PMC
Yamashita F, Sasa Y, Yoshida S et al (2013) Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data. PLoS ONE 8(9):e70330. https://doi.org/10.1371/journal.pone.0070330 PubMed DOI PMC
Zhang JG, Ho T, Callendrello AL, Crespi CL, Stresser DM (2010) A multi-endpoint evaluation of cytochrome P450 1A2, 2B6 and 3A4 induction response in human hepatocyte cultures after treatment with beta-naphthoflavone, phenobarbital and rifampicin. Drug Metab Lett 4(4):185–194. https://doi.org/10.2174/187231210792928224 PubMed DOI
Zhao P, Rowland M, Huang SM (2012) Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clin Pharmacol Ther 92(1):17–20. https://doi.org/10.1038/clpt.2012.68 PubMed DOI