Transcriptional and post-transcriptional regulation of the pregnane X receptor: a rationale for interindividual variability in drug metabolism
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33164107
DOI
10.1007/s00204-020-02916-x
PII: 10.1007/s00204-020-02916-x
Knihovny.cz E-zdroje
- Klíčová slova
- CYP3A4, Gene expression, Non-coding RNA, Post-transcriptional regulation, Pregnane X receptor, microRNA,
- MeSH
- biologická variabilita populace * MeSH
- biotransformace MeSH
- farmakogenetika MeSH
- farmakogenomické varianty * MeSH
- fenotyp MeSH
- genetická transkripce * MeSH
- genotyp MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- posttranskripční úpravy RNA * MeSH
- pregnanový X receptor genetika metabolismus MeSH
- RNA dlouhá nekódující genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA MeSH
- NR1I2 protein, human MeSH Prohlížeč
- pregnanový X receptor MeSH
- RNA dlouhá nekódující MeSH
The pregnane X receptor (PXR, encoded by the NR1I2 gene) is a ligand-regulated transcription factor originally described as a master regulator of xenobiotic detoxification. Later, however, PXR was also shown to interact with endogenous metabolism and to be further associated with various pathological states. This review focuses predominantly on such aspects, currently less covered in literature, as the control of PXR expression per se in the context of inter-individual differences in drug metabolism. There is growing evidence that non-coding RNAs post-transcriptionally regulate PXR. Effects on PXR have especially been reported for microRNAs (miRNAs), which include miR-148a, miR-18a-5p, miR-140-3p, miR-30c-1-3p and miR-877-5p. Likewise, miRNAs control the expression of both transcription factors involved in PXR expression and regulators of PXR function. The impact of NR1I2 genetic polymorphisms on miRNA-mediated PXR regulation is also discussed. As revealed recently, long non-coding RNAs (lncRNAs) appear to interfere with PXR expression. Reciprocally, PXR activation regulates non-coding RNA expression, thus comprising another level of PXR action in addition to the direct transactivation of protein-coding genes. PXR expression is further controlled by several transcription factors (cross-regulation) giving rise to different PXR transcript variants. Controversies remain regarding the suggested role of feedback regulation (auto-regulation) of PXR expression. In this review, we comprehensively summarize the miRNA-mediated, lncRNA-mediated and transcriptional regulation of PXR expression, and we propose that deciphering the precise mechanisms of PXR expression may bridge our knowledge gap in inter-individual differences in drug metabolism and toxicity.
Zobrazit více v PubMed
Aouabdi S, Gibson G, Plant N (2006) Transcriptional regulation of the PXR gene: identification and characterization of a functional peroxisome proliferator-activated receptor alpha binding site within the proximal promoter of PXR. Drug Metab Dispos 34(1):138–144. https://doi.org/10.1124/dmd.105.006064 PubMed DOI
Ayed-Boussema I, Pascussi JM, Zaied C, Maurel P, Bacha H, Hassen W (2012) Ochratoxin A induces CYP3A4, 2B6, 3A5, 2C9, 1A1, and CYP1A2 gene expression in primary cultured human hepatocytes: a possible activation of nuclear receptors. Drug Chem Toxicol 35(1):71–80. https://doi.org/10.3109/01480545.2011.589438 PubMed DOI
Bagamasbad P, Denver RJ (2011) Mechanisms and significance of nuclear receptor auto- and cross-regulation. Gen Comp Endocrinol 170(1):3–17. https://doi.org/10.1016/j.ygcen.2010.03.013 PubMed DOI
Bailey I, Gibson GG, Plant K, Graham M, Plant N (2011) A PXR-mediated negative feedback loop attenuates the expression of CYP3A in response to the PXR agonist pregnenalone-16alpha-carbonitrile. PLoS ONE 6(2):e16703. https://doi.org/10.1371/journal.pone.0016703 PubMed DOI PMC
Banerjee M, Robbins D, Chen T (2015) Targeting xenobiotic receptors PXR and CAR in human diseases. Drug Discov Today 20(5):618–628. https://doi.org/10.1016/j.drudis.2014.11.011 PubMed DOI
Benson EA, Eadon MT, Desta Z et al (2016) Rifampin regulation of drug transporters gene expression and the association of microRNAs in human hepatocytes. Front Pharmacol 7:111. https://doi.org/10.3389/fphar.2016.00111 PubMed DOI PMC
Berthier A, Oger F, Gheeraert C et al (2012) The novel antibacterial compound walrycin A induces human PXR transcriptional activity. Toxicol Sci 127(1):225–235. https://doi.org/10.1093/toxsci/kfs073 PubMed DOI PMC
Bertilsson G, Heidrich J, Svensson K et al (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 95(21):12208–12213. https://doi.org/10.1073/pnas.95.21.12208 PubMed DOI
Blumberg B, Sabbagh W Jr, Juguilon H et al (1998) SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 12(20):3195–3205. https://doi.org/10.1101/gad.12.20.3195 PubMed DOI PMC
Breuker C, Planque C, Rajabi F et al (2014) Characterization of a novel PXR isoform with potential dominant-negative properties. J Hepatol 61(3):609–616. https://doi.org/10.1016/j.jhep.2014.04.030 PubMed DOI
Brewer CT, Chen T (2016) PXR variants: the impact on drug metabolism and therapeutic responses. Acta Pharm Sin B 6(5):441–449. https://doi.org/10.1016/j.apsb.2016.07.002 PubMed DOI PMC
Burgess KS, Ipe J, Swart M et al (2018) Variants in the CYP2B6 3′UTR alter in vitro and in vivo CYP2B6 activity: potential role of microRNAs. Clin Pharmacol Ther 104(1):130–138. https://doi.org/10.1002/cpt.892 PubMed DOI
Cai Y, Yu X, Hu S, Yu J (2009) A brief review on the mechanisms of miRNA regulation. Genom Proteom Bioinform 7(4):147–154. https://doi.org/10.1016/S1672-0229(08)60044-3 DOI
Carnahan VE, Redinbo MR (2005) Structure and function of the human nuclear xenobiotic receptor PXR. Curr Drug Metab 6(4):357–367. https://doi.org/10.2174/1389200054633844 PubMed DOI
Chen L, Bao Y, Piekos SC, Zhu K, Zhang L, Zhong XB (2018) A transcriptional regulatory network containing nuclear receptors and long noncoding RNAs controls basal and drug-induced expression of cytochrome P450s in HepaRG cells. Mol Pharmacol 94(1):749–759. https://doi.org/10.1124/mol.118.112235 PubMed DOI PMC
Cheng C, Bhardwaj N, Gerstein M (2009) The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genom 10:431. https://doi.org/10.1186/1471-2164-10-431 DOI
Cloonan N (2015) Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. BioEssays 37(4):379–388. https://doi.org/10.1002/bies.201400191 PubMed DOI PMC
Dempsey JL, Cui JY (2017) Long non-coding RNAs: a novel paradigm for toxicology. Toxicol Sci 155(1):3–21. https://doi.org/10.1093/toxsci/kfw203 PubMed DOI
Dempsey JL, Cui JY (2019) Regulation of hepatic long noncoding RNAs by pregnane X receptor and constitutive androstane receptor agonists in mouse liver. Drug Metab Dispos 47(3):329–339. https://doi.org/10.1124/dmd.118.085142 PubMed DOI PMC
Doricakova A, Vrzal R (2015) A food contaminant ochratoxin A suppresses pregnane X receptor (PXR)-mediated CYP3A4 induction in primary cultures of human hepatocytes. Toxicology 337:72–78. https://doi.org/10.1016/j.tox.2015.08.012 PubMed DOI
Dotzlaw H, Leygue E, Watson P, Murphy LC (1999) The human orphan receptor PXR messenger RNA is expressed in both normal and neoplastic breast tissue. Clin Cancer Res 5(8):2103–2107 PubMed
Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. https://doi.org/10.1101/gr.082701.108 PubMed DOI PMC
Fukuen S, Fukuda T, Matsuda H et al (2002) Identification of the novel splicing variants for the hPXR in human livers. Biochem Biophys Res Commun 298(3):433–438. https://doi.org/10.1016/s0006-291x(02)02469-5 PubMed DOI
Gibson GG, Phillips A, Aouabdi S, Plant K, Plant N (2006) Transcriptional regulation of the human pregnane-X receptor. Drug Metab Rev 38(1–2):31–49. https://doi.org/10.1080/03602530600569810 PubMed DOI
Gufford BT, Robarge JD, Eadon MT et al (2018) Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes. Pharmacol Res Perspect 6(2):e00386. https://doi.org/10.1002/prp2.386 PubMed DOI PMC
Hakkola J, Rysa J, Hukkanen J (2016) Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochim Biophys Acta 1859(9):1072–1082. https://doi.org/10.1016/j.bbagrm.2016.03.012 PubMed DOI
Haslam IS, Jones K, Coleman T, Simmons NL (2008) Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br J Pharmacol 154(1):246–255. https://doi.org/10.1038/bjp.2008.69 PubMed DOI PMC
Hukkanen J, Hakkola J, Rysa J (2014) Pregnane X receptor (PXR)—a contributor to the diabetes epidemic? Drug Metabol Drug Interact 29(1):3–15. https://doi.org/10.1515/dmdi-2013-0036 PubMed DOI
Ihunnah CA, Jiang M, Xie W (2011) Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta 1812(8):956–963. https://doi.org/10.1016/j.bbadis.2011.01.014 PubMed DOI PMC
Iwazaki N, Kobayashi K, Morimoto K et al (2008) Involvement of hepatocyte nuclear factor 4 alpha in transcriptional regulation of the human pregnane X receptor gene in the human liver. Drug Metab Pharmacokinet 23(1):59–66. https://doi.org/10.2133/dmpk.23.59 PubMed DOI
Jiang Y, Feng D, Ma X et al (2019) Pregnane X receptor regulates liver size and liver cell fate by yes-associated protein activation in mice. Hepatology 69(1):343–358. https://doi.org/10.1002/hep.30131 PubMed DOI
Jilek JL, Tian Y, Yu AM (2017) Effects of microRNA-34a on the pharmacokinetics of cytochrome P450 probe drugs in mice. Drug Metab Dispos 45(5):512–522. https://doi.org/10.1124/dmd.116.074344 PubMed DOI PMC
Kandel BA, Thomas M, Winter S et al (2016) Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARalpha in primary human hepatocytes. Biochim Biophys Acta 1859(9):1218–1227. https://doi.org/10.1016/j.bbagrm.2016.03.007 PubMed DOI
Kim SW, Md H, Cho M et al (2017) Role of 14-3-3 sigma in over-expression of P-gp by rifampin and paclitaxel stimulation through interaction with PXR. Cell Signal 31:124–134. https://doi.org/10.1016/j.cellsig.2017.01.001 PubMed DOI
Kliewer SA, Willson TM (2002) Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J Lipid Res 43(3):359–364 PubMed
Knebel C, Buhrke T, Sussmuth R, Lampen A, Marx-Stoelting P, Braeuning A (2019) Pregnane X receptor mediates steatotic effects of propiconazole and tebuconazole in human liver cell lines. Arch Toxicol 93(5):1311–1322. https://doi.org/10.1007/s00204-019-02445-2 PubMed DOI
Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–73. https://doi.org/10.1093/nar/gkt1181 PubMed DOI
Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141 PubMed DOI
Kurose K, Koyano S, Ikeda S, Tohkin M, Hasegawa R, Sawada J (2005) 5' diversity of human hepatic PXR (NR1I2) transcripts and identification of the major transcription initiation site. Mol Cell Biochem 273(1–2):79–85. https://doi.org/10.1007/s11010-005-7757-7 PubMed DOI
Lamba V, Ghodke Y, Guan W, Tracy TS (2014) microRNA-34a is associated with expression of key hepatic transcription factors and cytochromes P450. Biochem Biophys Res Commun 445(2):404–411. https://doi.org/10.1016/j.bbrc.2014.02.024 PubMed DOI PMC
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y DOI
Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD (2008) Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14(1):35–42. https://doi.org/10.1261/rna.804508 PubMed DOI PMC
Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102(5):1016–1023. https://doi.org/10.1172/JCI3703 PubMed DOI PMC
Li J, Zhang Y (2019) Current experimental strategies for intracellular target identification of microRNA. ExRNA. https://doi.org/10.1186/s41544-018-0002-9 DOI
Li J, Wang Y, Wang L et al (2016) Identification of rifampin-regulated functional modules and related microRNAs in human hepatocytes based on the protein interaction network. BMC Genom 17(Suppl 7):517. https://doi.org/10.1186/s12864-016-2909-6 DOI
Li J, Zhao J, Wang H et al (2018) MicroRNA-140-3p enhances the sensitivity of hepatocellular carcinoma cells to sorafenib by targeting pregnenolone X receptor. Onco Targets Ther 11:5885–5894. https://doi.org/10.2147/OTT.S179509 PubMed DOI PMC
Li D, Tolleson WH, Yu D et al (2019) Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: epigenetic mechanisms in environmental toxicology and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 37(3):180–214. https://doi.org/10.1080/10590501.2019.1639481 PubMed DOI PMC
Li D, Wu L, Knox B et al (2020) Long noncoding RNA LINC00844-mediated molecular network regulates expression of drug metabolizing enzymes and nuclear receptors in human liver cells. Arch Toxicol. https://doi.org/10.1007/s00204-020-02706-5 PubMed DOI PMC
Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA (2002) Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 62(3):638–646. https://doi.org/10.1124/mol.62.3.638 PubMed DOI
Marx-Stoelting P, Knebel C, Braeuning A (2020) The Connection of azole fungicides with xeno-sensing nuclear receptors, drug metabolism and hepatotoxicity. Cells. https://doi.org/10.3390/cells9051192 PubMed DOI PMC
McDonnell AM, Dang CH (2013) Basic review of the cytochrome p450 system. J Adv Pract Oncol 4(4):263–268. https://doi.org/10.6004/jadpro.2013.4.4.7 PubMed DOI PMC
Miao L, Yao H, Li C et al (2016) A dual inhibition: microRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochim Biophys Acta 1859(4):650–662. https://doi.org/10.1016/j.bbagrm.2016.02.016 PubMed DOI
Misawa A, Inoue J, Sugino Y et al (2005) Methylation-associated silencing of the nuclear receptor 1I2 gene in advanced-type neuroblastomas, identified by bacterial artificial chromosome array-based methylated CpG island amplification. Cancer Res 65(22):10233–10242. https://doi.org/10.1158/0008-5472.CAN-05-1073 PubMed DOI
Moriya N, Kataoka H, Nishikawa J, Kugawa F (2016) Identification of candidate target Cyp genes for micrornas whose expression is altered by PCN and TCPOBOP, representative ligands of PXR and CAR. Biol Pharm Bull 39(8):1381–1386. https://doi.org/10.1248/bpb.b16-00279 PubMed DOI
Nakajima M, Yokoi T (2011) MicroRNAs from biology to future pharmacotherapy: regulation of cytochrome P450s and nuclear receptors. Pharmacol Ther 131(3):330–337. https://doi.org/10.1016/j.pharmthera.2011.04.009 PubMed DOI
Nakano M, Nakajima M (2018) Current knowledge of microRNA-mediated regulation of drug metabolism in humans. Expert Opin Drug Metab Toxicol 14(5):493–504. https://doi.org/10.1080/17425255.2018.1472237 PubMed DOI
Nakano M, Mohri T, Fukami T et al (2015) Single-nucleotide polymorphisms in cytochrome P450 2E1 (CYP2E1) 3′-untranslated region affect the regulation of CYP2E1 by miR-570. Drug Metab Dispos 43(10):1450–1457. https://doi.org/10.1124/dmd.115.065664 PubMed DOI
Nishimura M, Naito S, Yokoi T (2004) Tissue-specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metab Pharmacokinet 19(2):135–149. https://doi.org/10.2133/dmpk.19.135 PubMed DOI
Oda Y, Nakajima M, Tsuneyama K et al (2014) Retinoid X receptor alpha in human liver is regulated by miR-34a. Biochem Pharmacol 90(2):179–187. https://doi.org/10.1016/j.bcp.2014.05.002 PubMed DOI
Oladimeji PO, Chen T (2018) PXR: more than just a master xenobiotic receptor. Mol Pharmacol 93(2):119–127. https://doi.org/10.1124/mol.117.110155 PubMed DOI PMC
Oladimeji PO, Wright WC, Wu J, Chen T (2019) RNA interference screen identifies NAA10 as a regulator of PXR transcription. Biochem Pharmacol 160:92–109. https://doi.org/10.1016/j.bcp.2018.12.012 PubMed DOI
Oleson L, von Moltke LL, Greenblatt DJ, Court MH (2010) Identification of polymorphisms in the 3′-untranslated region of the human pregnane X receptor (PXR) gene associated with variability in cytochrome P450 3A (CYP3A) metabolism. Xenobiotica 40(2):146–162. https://doi.org/10.3109/00498250903420243 PubMed DOI PMC
Pan JJ, Xie XJ, Li X, Chen W (2015) Long non-coding RNAs and drug resistance. Asian Pac J Cancer Prev 16(18):8067–8073. https://doi.org/10.7314/apjcp.2015.16.18.8067 PubMed DOI
Pascussi JM, Drocourt L, Fabre JM, Maurel P, Vilarem MJ (2000) Dexamethasone induces pregnane X receptor and retinoid X receptor-alpha expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol Pharmacol 58(2):361–372. https://doi.org/10.1124/mol.58.2.361 PubMed DOI
Paul P, Chakraborty A, Sarkar D et al (2018) Interplay between miRNAs and human diseases. J Cell Physiol 233(3):2007–2018. https://doi.org/10.1002/jcp.25854 PubMed DOI
Pavek P (2016) Pregnane X receptor (PXR)-mediated gene repression and cross-talk of PXR with other nuclear receptors via coactivator interactions. Front Pharmacol 7:456. https://doi.org/10.3389/fphar.2016.00456 PubMed DOI PMC
Pondugula SR, Pavek P, Mani S (2016) Pregnane X receptor and cancer: context-specificity is key. Nucl Receptor Res. https://doi.org/10.11131/2016/101198 PubMed DOI PMC
Portius D, Sobolewski C, Foti M (2017) MicroRNAs-dependent regulation of PPARs in metabolic diseases and cancers. PPAR Res 2017:7058424. https://doi.org/10.1155/2017/7058424 PubMed DOI PMC
Ramamoorthy A, Li L, Gaedigk A et al (2012) In silico and in vitro identification of microRNAs that regulate hepatic nuclear factor 4alpha expression. Drug Metab Dispos 40(4):726–733. https://doi.org/10.1124/dmd.111.040329 PubMed DOI PMC
Ramamoorthy A, Liu Y, Philips S et al (2013) Regulation of microRNA expression by rifampin in human hepatocytes. Drug Metab Dispos 41(10):1763–1768. https://doi.org/10.1124/dmd.113.052886 PubMed DOI PMC
Rao ZZ, Zhang XW, Ding YL, Yang MY (2017) miR-148a-mediated estrogen-induced cholestasis in intrahepatic cholestasis of pregnancy: Role of PXR/MRP3. PLoS ONE 12(6):e0178702. https://doi.org/10.1371/journal.pone.0178702 PubMed DOI PMC
Reuter T, Herold-Mende C, Dyckhoff G, Rigalli JP, Weiss J (2019) Functional role of miR-148a in oropharyngeal cancer: influence on pregnane X receptor and P-glycoprotein expression. J Recept Signal Transduct Res 39(5–6):451–459. https://doi.org/10.1080/10799893.2019.1694541 PubMed DOI
Revathidevi S, Sudesh R, Vaishnavi V et al (2016) Screening for the 3′UTR polymorphism of the PXR gene in South Indian breast cancer patients and its potential role in pharmacogenomics. Asian Pac J Cancer Prev 17(8):3971–3977 PubMed
Rieger JK, Klein K, Winter S, Zanger UM (2013) Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab Dispos 41(10):1752–1762. https://doi.org/10.1124/dmd.113.052126 PubMed DOI
Rigoutsos I (2009) New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res 69(8):3245–3248. https://doi.org/10.1158/0008-5472.CAN-09-0352 PubMed DOI
Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103. https://doi.org/10.1186/1479-5876-10-103 PubMed DOI PMC
Shah YM, Ma X, Morimura K, Kim I, Gonzalez FJ (2007) Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression. Am J Physiol Gastrointest Liver Physiol 292(4):G1114–G1122. https://doi.org/10.1152/ajpgi.00528.2006 PubMed DOI
Sharma D, Turkistani AA, Chang W, Hu C, Xu Z, Chang TKH (2017) Negative regulation of human pregnane X receptor by microRNA-18a-5p: evidence for suppression of microRNA-18a-5p expression by rifampin and rilpivirine. Mol Pharmacol 92(1):48–56. https://doi.org/10.1124/mol.116.107003 PubMed DOI
Smutny T, Mani S, Pavek P (2013) Post-translational and post-transcriptional modifications of pregnane X receptor (PXR) in regulation of the cytochrome P450 superfamily. Curr Drug Metab 14(10):1059–1069. https://doi.org/10.2174/1389200214666131211153307 PubMed DOI PMC
Smutny T, Duintjer Tebbens J, Pavek P (2015) Bioinformatic analysis of miRNAs targeting the key nuclear receptors regulating CYP3A4 gene expression: The challenge of the CYP3A4 "missing heritability" enigma. J Appl Biomed 13(3):181–188. https://doi.org/10.1016/j.jab.2015.04.002 DOI
Smutny T, Dusek J, Hyrsova L et al (2020) The 3′-untranslated region contributes to the pregnane X receptor (PXR) expression down-regulation by PXR ligands and up-regulation by glucocorticoids. Acta Pharm Sin B 10(1):136–152. https://doi.org/10.1016/j.apsb.2019.09.010 PubMed DOI
Swart M, Dandara C (2014) Genetic variation in the 3′-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: potential effects on regulation by microRNA and pharmacogenomics relevance. Front Genet 5:167. https://doi.org/10.3389/fgene.2014.00167 PubMed DOI PMC
Swart M, Dandara C (2019) MicroRNA mediated changes in drug metabolism and target gene expression by efavirenz and rifampicin in vitro: clinical implications. OMICS 23(10):496–507. https://doi.org/10.1089/omi.2019.0122 PubMed DOI PMC
Takagi S, Nakajima M, Mohri T, Yokoi T (2008) Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 283(15):9674–9680. https://doi.org/10.1074/jbc.M709382200 PubMed DOI
Takahashi K, Tatsumi N, Fukami T, Yokoi T, Nakajima M (2014) Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab Pharmacokinet 29(4):333–340. https://doi.org/10.2133/dmpk.dmpk-13-rg-114 PubMed DOI
Tompkins LM, Sit TL, Wallace AD (2008) Unique transcription start sites and distinct promoter regions differentiate the pregnane X receptor (PXR) isoforms PXR 1 and PXR 2. Drug Metab Dispos 36(5):923–929. https://doi.org/10.1124/dmd.107.018317 PubMed DOI
Uno Y, Sakamoto Y, Yoshida K et al (2003) Characterization of six base pair deletion in the putative HNF1-binding site of human PXR promoter. J Hum Genet 48(11):594–597. https://doi.org/10.1007/s10038-003-0076-5 PubMed DOI
Vachirayonstien T, Yan B (2016) MicroRNA-30c-1-3p is a silencer of the pregnane X receptor by targeting the 3′-untranslated region and alters the expression of its target gene cytochrome P450 3A4. Biochim Biophys Acta 1859(9):1238–1244. https://doi.org/10.1016/j.bbagrm.2016.03.016 PubMed DOI
Wang J, Dai S, Guo Y, Xie W, Zhai Y (2014) Biology of PXR: role in drug-hormone interactions. EXCLI J 13:728–739 PubMed PMC
Wang Y, Yu D, Tolleson WH et al (2017) A systematic evaluation of microRNAs in regulating human hepatic CYP2E1. Biochem Pharmacol 138:174–184. https://doi.org/10.1016/j.bcp.2017.04.020 PubMed DOI PMC
Wang Y, Yan L, Liu J et al (2019) The HNF1alpha-regulated LncRNA HNF1alpha-AS1 is involved in the regulation of cytochrome P450 expression in human liver tissues and Huh7 cells. J Pharmacol Exp Ther 368(3):353–362. https://doi.org/10.1124/jpet.118.252940 PubMed DOI PMC
Wei Z, Chen M, Zhang Y et al (2013) No correlation of hsa-miR-148a with expression of PXR or CYP3A4 in human livers from Chinese Han population. PLoS ONE 8(3):e59141. https://doi.org/10.1371/journal.pone.0059141 PubMed DOI PMC
Wei Y, Tang C, Sant V, Li S, Poloyac SM, Xie W (2016) A molecular aspect in the regulation of drug metabolism: does PXR-induced enzyme expression always lead to functional changes in drug metabolism? Curr Pharmacol Rep 2(4):187–192. https://doi.org/10.1007/s40495-016-0062-1 PubMed DOI PMC
Wu B, Li S, Dong D (2013) 3D structures and ligand specificities of nuclear xenobiotic receptors CAR. PXR and VDR Drug Discov Today 18(11–12):574–581. https://doi.org/10.1016/j.drudis.2013.01.001 PubMed DOI
Xing Y, Yan J, Niu Y (2020) PXR: a center of transcriptional regulation in cancer. Acta Pharm Sin B 10(2):197–206. https://doi.org/10.1016/j.apsb.2019.06.012 PubMed DOI
Yan L, Liu J, Zhao Y et al (2017) Suppression of miR-628-3p and miR-641 is involved in rifampin-mediated CYP3A4 induction in HepaRG cells. Pharmacogenomics 18(1):57–64. https://doi.org/10.2217/pgs-2016-0088 PubMed DOI
Yu D, Green B, Tolleson WH et al (2015) MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem Pharmacol 98(1):215–223. https://doi.org/10.1016/j.bcp.2015.08.094 PubMed DOI PMC
Yu D, Wu L, Gill P et al (2018) Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol 92(2):845–858. https://doi.org/10.1007/s00204-017-2090-y PubMed DOI
Zheng H, Fu R, Wang JT, Liu Q, Chen H, Jiang SW (2013) Advances in the techniques for the prediction of microRNA targets. Int J Mol Sci 14(4):8179–8187. https://doi.org/10.3390/ijms14048179 PubMed DOI PMC
Zhou C, Tabb MM, Nelson EL et al (2006) Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J Clin Invest 116(8):2280–2289. https://doi.org/10.1172/JCI26283 PubMed DOI PMC
Expression dynamics of pregnane X receptor-controlled genes in 3D primary human hepatocyte spheroids