Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu přehledy, časopisecké články
PubMed
27932985
PubMed Central
PMC5122737
DOI
10.3389/fphar.2016.00456
Knihovny.cz E-zdroje
- Klíčová slova
- PXR, cross-talk, gene regulation, metabolism, nuclear receptor,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation.
Zobrazit více v PubMed
Bakan I., Laplante M. (2012). Connecting mTORC1 signaling to SREBP-1 activation. Curr. Opin. Lipidol. 23 226–234. 10.1097/MOL.0b013e328352dd03 PubMed DOI
Bertilsson G., Heidrich J., Svensson K., Asman M., Jendeberg L., Sydow-Backman M., et al. (1998). Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl. Acad. Sci. U.S.A. 95 12208–12213. 10.1073/pnas.95.21.12208 PubMed DOI PMC
Bhalla S., Ozalp C., Fang S., Xiang L., Kemper J. K. (2004). Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha. Functional implications in hepatic cholesterol and glucose metabolism. J. Biol. Chem. 279 45139–45147. 10.1074/jbc.M405423200 PubMed DOI
Biswas A., Pasquel D., Tyagi R. K., Mani S. (2011). Acetylation of pregnane X receptor protein determines selective function independent of ligand activation. Biochem. Biophys. Res. Commun. 406 371–376. 10.1016/j.bbrc.2011.02.048 PubMed DOI PMC
Blumberg B., Sabbagh W., Jr., Juguilon H., Bolado J., Jr., van Meter C. M., Ong E. S., et al. (1998). SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 12 3195–3205. 10.1101/gad.12.20.3195 PubMed DOI PMC
Buler M., Aatsinki S. M., Skoumal R., Hakkola J. (2011). Energy sensing factors PGC-1alpha and SIRT1 modulate PXR expression and function. Biochem. Pharmacol. 82 2008–2015. 10.1016/j.bcp.2011.09.006 PubMed DOI
Chrencik J. E., Orans J., Moore L. B., Xue Y., Peng L., Collins J. L., et al. (2005). Structural disorder in the complex of human pregnane X receptor and the macrolide antibiotic rifampicin. Mol. Endocrinol. 19 1125–1134. 10.1210/me.2004-0346 PubMed DOI
Crestani M., De Fabiani E., Caruso D., Mitro N., Gilardi F., Vigil Chacon A. B., et al. (2004). LXR (liver X receptor) and HNF-4 (hepatocyte nuclear factor-4): key regulators in reverse cholesterol transport. Biochem. Soc. Trans. 32 92–96. 10.1042/bst0320092 PubMed DOI
di Masi A., De Marinis E., Ascenzi P., Marino M. (2009). Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol. Aspects Med. 30 297–343. 10.1016/j.mam.2009.04.002 PubMed DOI
Ding X., Staudinger J. L. (2005a). Induction of drug metabolism by forskolin: the role of the pregnane X receptor and the protein kinase a signal transduction pathway. J. Pharmacol. Exp. Ther. 312 849–856. 10.1124/jpet.104.076331 PubMed DOI
Ding X., Staudinger J. L. (2005b). Repression of PXR-mediated induction of hepatic CYP3A gene expression by protein kinase C. Biochem. Pharmacol. 69 867–873. 10.1016/j.bcp.2004.11.025 PubMed DOI
Friedman J. R., Kaestner K. H. (2006). The foxa family of transcription factors in development and metabolism. Cell Mol. Life Sci. 63 2317–2328. 10.1007/s00018-006-6095-6 PubMed DOI PMC
Gao J., Xie W. (2012). Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol. Sci. 33 552–558. 10.1016/j.tips.2012.07.003 PubMed DOI PMC
Gotoh S., Negishi M. (2014). Serum- and glucocorticoid-regulated kinase 2 determines drug-activated pregnane X receptor to induce gluconeogenesis in human liver cells. J. Pharmacol. Exp. Ther. 348 131–140. 10.1124/jpet.113.209379 PubMed DOI PMC
Gotoh S., Negishi M. (2015). Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis. Sci. Rep. 5:14076 10.1038/srep14076 PubMed DOI PMC
Gu X., Ke S., Liu D., Sheng T., Thomas P. E., Rabson A. B., et al. (2006). Role of NF-kappaB in regulation of PXR-mediated gene expression: a mechanism for the suppression of cytochrome P-450 3A4 by proinflammatory agents. J. Biol. Chem. 281 17882–17889. 10.1074/jbc.M601302200 PubMed DOI
Guo D., Bell E. H., Mischel P., Chakravarti A. (2014). Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr. Pharm. Des. 20 2619–2626. 10.2174/13816128113199990486 PubMed DOI PMC
Hakkola J., Rysa J., Hukkanen J. (2016). Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochim. Biophys. Acta 1859 1072–1082. 10.1016/j.bbagrm.2016.03.012 PubMed DOI
Handschin C. (2009). The biology of PGC-1alpha and its therapeutic potential. Trends Pharmacol. Sci. 30 322–329. 10.1016/j.tips.2009.03.006 PubMed DOI
Hirooka-Masui K., Lesmana R., Iwasaki T., Xu M., Hayasaka K., Haraguchi M., et al. (2013). Interaction of silencing mediator for retinoid and thyroid receptors with steroid and xenobiotic receptor on multidrug resistance 1 promoter. Life Sci. 92 911–915. 10.1016/j.lfs.2013.03.007 PubMed DOI
Hustert E., Zibat A., Presecan-Siedel E., Eiselt R., Mueller R., Fuss C., et al. (2001). Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab. Dispos. 29 1454–1459. PubMed
Hyrsova L., Smutny T., Carazo A., Moravcik S., Mandikova J., Trejtnar F., et al. (2016). The pregnane X receptor down-regulates organic cation transporter 1 (SLC22A1) in human hepatocytes by competing for (“squelching”) SRC-1 coactivator. Br. J. Pharmacol. 173 1703–1715. 10.1111/bph.13472 PubMed DOI PMC
Johnson D. R., Li C. W., Chen L. Y., Ghosh J. C., Chen J. D. (2006). Regulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT). Mol. Pharmacol. 69 99–108. PubMed
Jover R., Moya M., Gomez-Lechon M. J. (2009). Transcriptional regulation of cytochrome p450 genes by the nuclear receptor hepatocyte nuclear factor 4-alpha. Curr. Drug Metab. 10 508–519. 10.2174/138920009788898000 PubMed DOI
Kandel B. A., Thomas M., Winter S., Damm G., Seehofer D., Burk O., et al. (2016). Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARalpha in primary human hepatocytes. Biochim. Biophys. Acta 1859 1218–1227. 10.1016/j.bbagrm.2016.03.007 PubMed DOI
Kawana K., Ikuta T., Kobayashi Y., Gotoh O., Takeda K., Kawajiri K. (2003). Molecular mechanism of nuclear translocation of an orphan nuclear receptor. SXR. Mol. Pharmacol. 63 524–531. 10.1124/mol.63.3.524 PubMed DOI
Kemper J. K., Choi S. E., Kim D. H. (2013). Sirtuin 1 deacetylase: a key regulator of hepatic lipid metabolism. Vitam. Horm. 91 385–404. 10.1016/B978-0-12-407766-9.00016-X PubMed DOI PMC
Kliewer S. A., Goodwin B., Willson T. M. (2002). The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 23 687–702. 10.1210/er.2001-0038 PubMed DOI
Kliewer S. A., Moore J. T., Wade L., Staudinger J. L., Watson M. A., Jones S. A., et al. (1998). An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92 73–82. 10.1016/S0092-8674(00)80900-9 PubMed DOI
Kodama S., Hosseinpour F., Goldstein J. A., Negishi M. (2011). Liganded pregnane X receptor represses the human sulfotransferase SULT1E1 promoter through disrupting its chromatin structure. Nucleic Acids Res. 39 8392–8403. 10.1093/nar/gkr458 PubMed DOI PMC
Kodama S., Koike C., Negishi M., Yamamoto Y. (2004). Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol. Cell. Biol. 24 7931–7940. 10.1128/MCB.24.18.7931-7940.2004 PubMed DOI PMC
Kodama S., Moore R., Yamamoto Y., Negishi M. (2007). Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochem. J. 407 373–381. 10.1042/BJ20070481 PubMed DOI PMC
Kodama S., Yamazaki Y., Negishi M. (2015). Pregnane X receptor represses HNF4alpha gene to Induce Insulin-Like Growth Factor-Binding Protein IGFBP1 that alters morphology of and migrates HepG2 cells. Mol. Pharmacol. 88 746–757. 10.1124/mol.115.099341 PubMed DOI PMC
Konno Y., Kodama S., Moore R., Kamiya N., Negishi M. (2009). Nuclear xenobiotic receptor pregnane X receptor locks corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) onto the CYP24A1 promoter to attenuate vitamin D3 activation. Mol. Pharmacol. 75 265–271. 10.1124/mol.108.051904 PubMed DOI PMC
Kousteni S. (2012). FoxO1, the transcriptional chief of staff of energy metabolism. Bone 50 437–443. 10.1016/j.bone.2011.06.034 PubMed DOI PMC
Krausova L., Stejskalova L., Wang H., Vrzal R., Dvorak Z., Mani S., et al. (2011). Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochem. Pharmacol. 82 1771–1780. 10.1016/j.bcp.2011.08.023 PubMed DOI PMC
Lazar M. A. (2003). Nuclear receptor corepressors. Nucl. Recept. Signal. 1 e001 10.1621/nrs.01001 PubMed DOI PMC
Lehmann J. M., McKee D. D., Watson M. A., Willson T. M., Moore J. T., Kliewer S. A. (1998). The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 102 1016–1023. 10.1172/JCI3703 PubMed DOI PMC
Li C. W., Dinh G. K., Chen J. D. (2009). Preferential physical and functional interaction of pregnane X receptor with the SMRTalpha isoform. Mol. Pharmacol. 75 363–373. 10.1124/mol.108.047845 PubMed DOI PMC
Li T., Chiang J. Y. (2005). Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am. J. Physiol. Gastrointest. Liver Physiol. 288 G74–G84. 10.1152/ajpgi.00258.2004 PubMed DOI
Li T., Chiang J. Y. (2006). Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and suppression of small heterodimer partner gene expression. Drug Metab. Dispos. 34 756–764. 10.1124/dmd.105.007575 PubMed DOI PMC
Liu C., Lin J. D. (2011). PGC-1 coactivators in the control of energy metabolism. Acta Biochim. Biophys Sin. (Shanghai) 43 248–257. 10.1093/abbs/gmr007 PubMed DOI PMC
Mani S., Huang H., Sundarababu S., Liu W., Kalpana G., Smith A. B., et al. (2005). Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule-stabilizing agents. Clin. Cancer Res. 11 6359–6369. 10.1158/1078-0432.CCR-05-0252 PubMed DOI
Masuyama H., Hiramatsu Y., Kunitomi M., Kudo T., MacDonald P. N. (2000). Endocrine disrupting chemicals, phthalic acid and nonylphenol, activate Pregnane X receptor-mediated transcription. Mol. Endocrinol. 14 421–428. 10.1210/mend.14.3.0424 PubMed DOI
Matsumura K., Saito T., Takahashi Y., Ozeki T., Kiyotani K., Fujieda M., et al. (2004). Identification of a novel polymorphic enhancer of the human CYP3A4 gene. Mol. Pharmacol. 65 326–334. 10.1124/mol.65.2.326 PubMed DOI
Miao J., Fang S., Bae Y., Kemper J. K. (2006). Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators. GRIP-1 and PGC-1alpha. J. Biol. Chem. 281 14537–14546. 10.1074/jbc.M510713200 PubMed DOI
Min G., Kim H., Bae Y., Petz L., Kemper J. K. (2002). Inhibitory cross-talk between estrogen receptor (ER) and constitutively activated androstane receptor (CAR). CAR inhibits ER-mediated signaling pathway by squelching p160 coactivators. J. Biol. Chem. 277 34626–34633. 10.1074/jbc.M205239200 PubMed DOI
Moore D. D., Kato S., Xie W., Mangelsdorf D. J., Schmidt D. R., Xiao R., et al. (2006). International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol. Rev. 58 742–759. 10.1124/pr.58.4.6 PubMed DOI
Moore R. L., Dai Y., Faller D. V. (2012). Sirtuin 1 (SIRT1) and steroid hormone receptor activity in cancer. J. Endocrinol. 213 37–48. 10.1530/JOE-11-0217 PubMed DOI PMC
Nakamura K., Moore R., Negishi M., Sueyoshi T. (2007). Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J. Biol. Chem. 282 9768–9776. 10.1074/jbc.M610072200 PubMed DOI PMC
Navaratnarajah P., Steele B. L., Redinbo M. R., Thompson N. L. (2012). Rifampicin-independent interactions between the pregnane X receptor ligand binding domain and peptide fragments of coactivator and corepressor proteins. Biochemistry 51 19–31. 10.1021/bi2011674 PubMed DOI PMC
Noble S. M., Carnahan V. E., Moore L. B., Luntz T., Wang H., Ittoop O. R., et al. (2006). Human PXR forms a tryptophan zipper-mediated homodimer. Biochemistry 45 8579–8589. 10.1021/bi0602821 PubMed DOI PMC
Odom D. T., Zizlsperger N., Gordon D. B., Bell G. W., Rinaldi N. J., Murray H. L., et al. (2004). Control of pancreas and liver gene expression by HNF transcription factors. Science 303 1378–1381. 10.1126/science.1089769 PubMed DOI PMC
Oh K. J., Han H. S., Kim M. J., Koo S. H. (2013). CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep. 46 567–574. 10.5483/BMBRep.2013.46.12.248 PubMed DOI PMC
Oladimeji P., Cui H., Zhang C., Chen T. (2016). Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk. Exp. Opin. Drug Metab. Toxicol. 12 997–1010. 10.1080/17425255.2016.1201069 PubMed DOI PMC
Ourlin J. C., Lasserre F., Pineau T., Fabre J. M., Sa-Cunha A., Maurel P., et al. (2003). The small heterodimer partner interacts with the pregnane X receptor and represses its transcriptional activity. Mol. Endocrinol. 17 1693–1703. 10.1210/me.2002-0383 PubMed DOI
Pascussi J. M., Gerbal-Chaloin S., Duret C., Daujat-Chavanieu M., Vilarem M. J., Maurel P. (2008). The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu. Rev. Pharmacol. Toxicol. 48 1–32. 10.1146/annurev.pharmtox.47.120505.105349 PubMed DOI
Pascussi J. M., Gerbal-Chaloin S., Pichard-Garcia L., Daujat M., Fabre J. M., Maurel P., et al. (2000). Interleukin-6 negatively regulates the expression of pregnane X receptor and constitutively activated receptor in primary human hepatocytes. Biochem. Biophys. Res. Commun. 274 707–713. 10.1006/bbrc.2000.3219 PubMed DOI
Pavek P., Dvorak Z. (2008). Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr. Drug Metab. 9 129–143. 10.2174/138920008783571774 PubMed DOI
Pavek P., Pospechova K., Svecova L., Syrova Z., Stejskalova L., Blazkova J., et al. (2010). Intestinal cell-specific vitamin D receptor (VDR)-mediated transcriptional regulation of CYP3A4 gene. Biochem. Pharmacol. 79 277–287. 10.1016/j.bcp.2009.08.017 PubMed DOI
Pavek P., Stejskalova L., Krausova L., Bitman M., Vrzal R., Dvorak Z. (2012). Rifampicin does not significantly affect the expression of small heterodimer partner in primary human hepatocytes. Front. Pharmacol. 3:1 10.3389/fphar.2012.00001 PubMed DOI PMC
Pettersson F., Hanna N., Lagodich M., Dupere-Richer D., Couture M. C., Choi C., et al. (2008). Rexinoids modulate steroid and xenobiotic receptor activity by increasing its protein turnover in a calpain-dependent manner. J. Biol. Chem. 283 21945–21952. 10.1074/jbc.M710358200 PubMed DOI
Rodgers J. T., Lerin C., Haas W., Gygi S. P., Spiegelman B. M., Puigserver P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434 113–118. 10.1038/nature03354 PubMed DOI
Rosenfeld M. G., Lunyak V. V., Glass C. K. (2006). Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20 1405–1428. 10.1101/gad.1424806 PubMed DOI
Roth A., Looser R., Kaufmann M., Blattler S. M., Rencurel F., Huang W., et al. (2008a). Regulatory cross-talk between drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Mol. Pharmacol. 73 1282–1289. 10.1124/mol.107.041012 PubMed DOI
Roth A., Looser R., Kaufmann M., Meyer U. A. (2008b). Sterol regulatory element binding protein 1 interacts with pregnane X receptor and constitutive androstane receptor and represses their target genes. Pharmacogenet Genomics 18 325–337. 10.1097/FPC.0b013e3282f706e0 PubMed DOI
Rulcova A., Prokopova I., Krausova L., Bitman M., Vrzal R., Dvorak Z., et al. (2010). Stereoselective interactions of warfarin enantiomers with the pregnane X nuclear receptor in gene regulation of major drug-metabolizing cytochrome P450 enzymes. J. Thromb. Haemost. 8 2708–2717. 10.1111/j.1538-7836.2010.04036.x PubMed DOI
Rysa J., Buler M., Savolainen M. J., Ruskoaho H., Hakkola J., Hukkanen J. (2013). Pregnane X receptor agonists impair postprandial glucose tolerance. Clin. Pharmacol. Ther. 93 556–563. 10.1038/clpt.2013.48 PubMed DOI
Saini S. P., Mu Y., Gong H., Toma D., Uppal H., Ren S., et al. (2005). Dual role of orphan nuclear receptor pregnane X receptor in bilirubin detoxification in mice. Hepatology 41 497–505. 10.1002/hep.20570 PubMed DOI
Saradhi M., Sengupta A., Mukhopadhyay G., Tyagi R. K. (2005). Pregnane and Xenobiotic Receptor (PXR/SXR) resides predominantly in the nuclear compartment of the interphase cell and associates with the condensed chromosomes during mitosis. Biochim. Biophys. Acta 1746 85–94. 10.1016/j.bbamcr.2005.10.004 PubMed DOI
Smutny T., Bitman M., Urban M., Dubecka M., Vrzal R., Dvorak Z., et al. (2014). U0126, a mitogen-activated protein kinase kinase 1 and 2 (MEK1 and 2) inhibitor, selectively up-regulates main isoforms of CYP3A subfamily via a pregnane X receptor (PXR) in HepG2 cells. Arch. Toxicol. 88 2243–2259. 10.1007/s00204-014-1254-2 PubMed DOI
Smutny T., Mani S., Pavek P. (2013). Post-translational and post-transcriptional modifications of pregnane X receptor (PXR) in regulation of the cytochrome P450 superfamily. Curr. Drug Metab. 14 1059–1069. 10.2174/1389200214666131211153307 PubMed DOI PMC
Squires E. J., Sueyoshi T., Negishi M. (2004). Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. J. Biol. Chem. 279 49307–49314. 10.1074/jbc.M407281200 PubMed DOI
Szwarc M. M., Kommagani R., Lessey B. A., Lydon J. P. (2014). The p160/steroid receptor coactivator family: potent arbiters of uterine physiology and dysfunction. Biol. Reprod. 91 122 10.1095/biolreprod.114.125021 PubMed DOI PMC
Takeshita A., Taguchi M., Koibuchi N., Ozawa Y. (2002). Putative role of the orphan nuclear receptor SXR (steroid and xenobiotic receptor) in the mechanism of CYP3A4 inhibition by xenobiotics. J. Biol. Chem. 277 32453–32458. 10.1074/jbc.M111245200 PubMed DOI
Tirona R. G., Lee W., Leake B. F., Lan L. B., Cline C. B., Lamba V., et al. (2003). The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat. Med. 9 220–224. 10.1038/nm815 PubMed DOI
Venkatesh M., Mukherjee S., Wang H., Li H., Sun K., Benechet A. P., et al. (2014). Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41 296–310. 10.1016/j.immuni.2014.06.014 PubMed DOI PMC
Wada T., Kang H. S., Jetten A. M., Xie W. (2008). The emerging role of nuclear receptor RORalpha and its crosstalk with LXR in xeno- and endobiotic gene regulation. Exp. Biol. Med. 233 1191–1201. 10.3181/0802-MR-50 PubMed DOI PMC
Wang K., Mendy A. J., Dai G., Luo H. R., He L., Wan Y. J. (2006). Retinoids activate the RXR/SXR-mediated pathway and induce the endogenous CYP3A4 activity in Huh7 human hepatoma cells. Toxicol. Sci. 92 51–60. 10.1093/toxsci/kfj207 PubMed DOI
Wang L., Lonard D. M., O’Malley B. W. (2016). The role of steroid receptor coactivators in hormone dependent cancers and their potential as therapeutic targets. Horm. Cancer 7 229–235. 10.1007/s12672-016-0261-6 PubMed DOI PMC
Wang Y. M., Ong S. S., Chai S. C., Chen T. (2012). Role of CAR and PXR in xenobiotic sensing and metabolism. Exp. Opin. Drug Metab. Toxicol. 8 803–817. 10.1517/17425255.2012.685237 PubMed DOI PMC
Watanabe K., Sakurai K., Tsuchiya Y., Yamazoe Y., Yoshinari K. (2013). Dual roles of nuclear receptor liver X receptor alpha (LXRalpha) in the CYP3A4 expression in human hepatocytes as a positive and negative regulator. Biochem. Pharmacol. 86 428–436. 10.1016/j.bcp.2013.05.016 PubMed DOI
Watkins R. E., Davis-Searles P. R., Lambert M. H., Redinbo M. R. (2003). Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J. Mol. Biol. 331 815–828. 10.1016/S0022-2836(03)00795-2 PubMed DOI
Watkins R. E., Wisely G. B., Moore L. B., Collins J. L., Lambert M. H., Williams S. P., et al. (2001). The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292 2329–2333. 10.1126/science.1060762 PubMed DOI
Watt A. J., Garrison W. D., Duncan S. A. (2003). HNF4: a central regulator of hepatocyte differentiation and function. Hepatology 37 1249–1253. 10.1053/jhep.2003.50273 PubMed DOI
Wolfrum C., Asilmaz E., Luca E., Friedman J. M., Stoffel M. (2004). Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432 1027–1032. 10.1038/nature03047 PubMed DOI
Xie W., Yeuh M. F., Radominska-Pandya A., Saini S. P., Negishi Y., Bottroff B. S., et al. (2003). Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc. Natl. Acad. Sci. U.S.A. 100 4150–4155. 10.1073/pnas.0438010100 PubMed DOI PMC
Xue Y., Moore L. B., Orans J., Peng L., Bencharit S., Kliewer S. A., et al. (2007). Crystal structure of the pregnane X receptor-estradiol complex provides insights into endobiotic recognition. Mol. Endocrinol. 21 1028–1038. 10.1210/me.2006-0323 PubMed DOI
Zhai Y., Wada T., Zhang B., Khadem S., Ren S., Kuruba R., et al. (2010). A functional cross-talk between liver X receptor-alpha and constitutive androstane receptor links lipogenesis and xenobiotic responses. Mol. Pharmacol. 78 666–674. 10.1124/mol.110.064618 PubMed DOI PMC
Zhang J., Kuehl P., Green E. D., Touchman J. W., Watkins P. B., Daly A., et al. (2001). The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics 11 555–572. 10.1097/00008571-200110000-00003 PubMed DOI
Zhang Y., Hagedorn C. H., Wang L. (2011). Role of nuclear receptor SHP in metabolism and cancer. Biochim. Biophys. Acta 1812 893–908. 10.1016/j.bbadis.2010.10.006 PubMed DOI PMC
Zhou C., Tabb M. M., Nelson E. L., Grun F., Verma S., Sadatrafiei A., et al. (2006). Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J. Clin. Invest. 116 2280–2289. 10.1172/JCI26283 PubMed DOI PMC
Zhou C., Verma S., Blumberg B. (2009). The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nucl. Recept. Signal. 7 e001 10.1621/nrs.07001 PubMed DOI PMC
Zou A., Lehn S., Magee N., Zhang Y. (2015). New insights into orphan nuclear receptor SHP in liver cancer. Nucl. Receptor Res. 2:101162 10.11131/2015/101162 PubMed DOI PMC