Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29914136
PubMed Central
PMC6032247
DOI
10.3390/ijms19061785
PII: ijms19061785
Knihovny.cz E-zdroje
- Klíčová slova
- Pregnane X receptor, gene regulation, mathematical models, simulation,
- MeSH
- genové regulační sítě * MeSH
- lidé MeSH
- pregnanový X receptor MeSH
- steroidní receptory genetika metabolismus MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- teoretické modely * MeSH
- zpětná vazba fyziologická MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- pregnanový X receptor MeSH
- steroidní receptory MeSH
- systém (enzymů) cytochromů P-450 MeSH
The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug⁻drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.
Zobrazit více v PubMed
Germain P., Staels B., Dacquet C., Spedding M., Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. PubMed DOI
Halilbasic E., Baghdasaryan A., Trauner M. Nuclear receptors as drug targets in cholestatic liver diseases. Clin. Liver Dis. 2013;17:161–189. doi: 10.1016/j.cld.2012.12.001. PubMed DOI PMC
Imai Y., Youn M.Y., Inoue K., Takada I., Kouzmenko A., Kato S. Nuclear receptors in bone physiology and diseases. Physiol. Rev. 2013;93:481–523. doi: 10.1152/physrev.00008.2012. PubMed DOI PMC
Saijo K., Crotti A., Glass C.K. Nuclear receptors, inflammation, and neurodegenerative diseases. Adv. Immunol. 2010;106:21–59. PubMed
Lazar M.A. Nuclear hormone receptors: From molecules to diseases. J. Investig. Med. 1999;47:364–368. PubMed
Di Masi A., De Marinis E., Ascenzi P., Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol. Asp. Med. 2009;30:297–343. doi: 10.1016/j.mam.2009.04.002. PubMed DOI
Moore D.D., Kato S., Xie W., Mangelsdorf D.J., Schmidt D.R., Xiao R., Kliewer S.A. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: Constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol. Rev. 2006;58:742–759. doi: 10.1124/pr.58.4.6. PubMed DOI
Smutny T., Mani S., Pavek P. Post-translational and post-transcriptional modifications of pregnane X receptor (PXR) in regulation of the cytochrome P450 superfamily. Curr. Drug Metab. 2013;14:1059–1069. doi: 10.2174/1389200214666131211153307. PubMed DOI PMC
Mackowiak B., Wang H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochim. Biophys. Acta. 2016;1859:1130–1140. doi: 10.1016/j.bbagrm.2016.02.006. PubMed DOI PMC
Marino M., di Masi A., Trezza V., Pallottini V., Polticelli F., Ascenzi P. Xenosensors CAR and PXR at work: Impact on statin metabolism. Curr. Drug Metab. 2011;12:300–311. doi: 10.2174/138920011795101859. PubMed DOI
Pavek P. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions. Front. Pharmacol. 2016;7:456. doi: 10.3389/fphar.2016.00456. PubMed DOI PMC
Blumberg B., Kang H., Bolado J., Jr., Chen H., Craig A.G., Moreno T.A., Umesono K., Perlmann T., De Robertis E.M., Evans R.M. BXR, an embryonic orphan nuclear receptor activated by a novel class of endogenous benzoate metabolites. Genes Dev. 1998;12:1269–1277. doi: 10.1101/gad.12.9.1269. PubMed DOI PMC
Blumberg B., Sabbagh W., Jr., Juguilon H., Bolado J., Jr., van Meter C.M., Ong E.S., Evans R.M. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 1998;12:3195–3205. doi: 10.1101/gad.12.20.3195. PubMed DOI PMC
Kliewer S.A., Moore J.T., Wade L., Staudinger J.L., Watson M.A., Jones S.A., McKee D.D., Oliver B.B., Willson T.M., Zetterstrom R.H., et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell. 1998;92:73–82. doi: 10.1016/S0092-8674(00)80900-9. PubMed DOI
Goodwin B., Hodgson E., Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 1999;56:1329–1339. doi: 10.1124/mol.56.6.1329. PubMed DOI
Pavek P., Dvorak Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr. Drug Metab. 2008;9:129–143. doi: 10.2174/138920008783571774. PubMed DOI
Kliewer S.A. The nuclear pregnane X receptor regulates xenobiotic detoxification. J. Nutr. 2003;133(Suppl. 7):2444S–2447S. doi: 10.1093/jn/133.7.2444S. PubMed DOI
Sinz M., Kim S., Zhu Z., Chen T., Anthony M., Dickinson K., Rodrigues A.D. Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr. Drug Metab. 2006;7:375–388. doi: 10.2174/138920006776873535. PubMed DOI
Hedrich W.D., Hassan H.E., Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm. Sin. B. 2016;6:413–425. doi: 10.1016/j.apsb.2016.07.016. PubMed DOI PMC
Prakash C., Zuniga B., Song C.S., Jiang S., Cropper J., Park S., Chatterjee B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. Nucl. Recept. Res. 2015;2:101178. doi: 10.11131/2015/101178. PubMed DOI PMC
Wei Y., Tang C., Sant V., Li S., Poloyac S.M., Xie W. A Molecular Aspect in the Regulation of Drug Metabolism: Does PXR-Induced Enzyme Expression Always Lead to Functional Changes in Drug Metabolism? Curr. Pharmacol. Rep. 2016;2:187–192. doi: 10.1007/s40495-016-0062-1. PubMed DOI PMC
Hustert E., Zibat A., Presecan-Siedel E., Eiselt R., Mueller R., Fuss C., Brehm I., Brinkmann U., Eichelbaum M., Wojnowski L., et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab. Dispos. Biol. Fate Chem. 2001;29:1454–1459. PubMed
Zhang J., Kuehl P., Green E.D., Touchman J.W., Watkins P.B., Daly A., Hall S.D., Maurel P., Relling M., Brimer C., et al. The human pregnane X receptor: Genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics. 2001;11:555–572. doi: 10.1097/00008571-200110000-00003. PubMed DOI
Brewer C.T., Chen T. PXR variants: The impact on drug metabolism and therapeutic responses. Acta Pharm. Sin. B. 2016;6:441–449. doi: 10.1016/j.apsb.2016.07.002. PubMed DOI PMC
Barwick J.L., Quattrochi L.C., Mills A.S., Potenza C., Tukey R.H., Guzelian P.S. Trans-species gene transfer for analysis of glucocorticoid-inducible transcriptional activation of transiently expressed human CYP3A4 and rabbit CYP3A6 in primary cultures of adult rat and rabbit hepatocytes. Mol. Pharmacol. 1996;50:10–16. PubMed
Yan J., Xie W. A brief history of the discovery of PXR and CAR as xenobiotic receptors. Acta Pharm. Sin. B. 2016;6:450–452. doi: 10.1016/j.apsb.2016.06.011. PubMed DOI PMC
Watkins R.E., Wisely G.B., Moore L.B., Collins J.L., Lambert M.H., Williams S.P., Willson T.M., Kliewer S.A., Redinbo M.R. The human nuclear xenobiotic receptor PXR: Structural determinants of directed promiscuity. Science. 2001;292:2329–2333. doi: 10.1126/science.1060762. PubMed DOI
Iyer M., Reschly E.J., Krasowski M.D. Functional evolution of the pregnane X receptor. Expert Opin. Drug Metab. Toxicol. 2006;2:381–397. doi: 10.1517/17425255.2.3.381. PubMed DOI PMC
Scheer N., Ross J., Kapelyukh Y., Rode A., Wolf C.R. In vivo responses of the human and murine pregnane X receptor to dexamethasone in mice. Drug Metab. Dispos. Biol. Fate Chem. 2010;38:1046–1053. doi: 10.1124/dmd.109.031872. PubMed DOI
Moore L.B., Parks D.J., Jones S.A., Bledsoe R.K., Consler T.G., Stimmel J.B., Goodwin B., Liddle C., Blanchard S.G., Willson T.M., et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem. 2000;275:15122–15127. doi: 10.1074/jbc.M001215200. PubMed DOI
Xie W., Barwick J.L., Downes M., Blumberg B., Simon C.M., Nelson M.C., Neuschwander-Tetri B.A., Brunt E.M., Guzelian P.S., Evans R.M. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature. 2000;406:435–439. doi: 10.1038/35019116. PubMed DOI
Kawana K., Ikuta T., Kobayashi Y., Gotoh O., Takeda K., Kawajiri K. Molecular mechanism of nuclear translocation of an orphan nuclear receptor, SXR. Mol. Pharmacol. 2003;63:524–531. doi: 10.1124/mol.63.3.524. PubMed DOI
Squires E.J., Sueyoshi T., Negishi M. Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. J. Biol. Chem. 2004;279:49307–49314. doi: 10.1074/jbc.M407281200. PubMed DOI
Saradhi M., Sengupta A., Mukhopadhyay G., Tyagi R.K. Pregnane and Xenobiotic Receptor (PXR/SXR) resides predominantly in the nuclear compartment of the interphase cell and associates with the condensed chromosomes during mitosis. Biochim. Biophys. Acta. 2005;1746:85–94. doi: 10.1016/j.bbamcr.2005.10.004. PubMed DOI
Ding X., Lichti K., Staudinger J.L. The mycoestrogen zearalenone induces CYP3A through activation of the pregnane X receptor. Toxicol. Sci. 2006;91:448–455. doi: 10.1093/toxsci/kfj163. PubMed DOI PMC
Synold T.W., Dussault I., Forman B.M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat. Med. 2001;7:584–590. doi: 10.1038/87912. PubMed DOI
Johnson D.R., Li C.W., Chen L.Y., Ghosh J.C., Chen J.D. Regulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) Mol. Pharmacol. 2006;69:99–108. PubMed
Handschin C., Meyer U.A. Induction of drug metabolism: The role of nuclear receptors. Pharmacol. Rev. 2003;55:649–673. doi: 10.1124/pr.55.4.2. PubMed DOI
Kliewer S.A., Goodwin B., Willson T.M. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocr. Rev. 2002;23:687–702. doi: 10.1210/er.2001-0038. PubMed DOI
Hariparsad N., Chu X., Yabut J., Labhart P., Hartley D.P., Dai X., Evers R. Identification of pregnane-X receptor target genes and coactivator and corepressor binding to promoter elements in human hepatocytes. Nucleic Acids Res. 2009;37:1160–1173. doi: 10.1093/nar/gkn1047. PubMed DOI PMC
Ourlin J.C., Lasserre F., Pineau T., Fabre J.M., Sa-Cunha A., Maurel P., Vilarem M.J., Pascussi J.M. The small heterodimer partner interacts with the pregnane X receptor and represses its transcriptional activity. Mol. Endocrinol. 2003;17:1693–1703. doi: 10.1210/me.2002-0383. PubMed DOI
Pavek P., Stejskalova L., Krausova L., Bitman M., Vrzal R., Dvorak Z. Rifampicin Does not Significantly Affect the Expression of Small Heterodimer Partner in Primary Human Hepatocytes. Front. Pharmacol. 2012;3:1. doi: 10.3389/fphar.2012.00001. PubMed DOI PMC
Ding X., Staudinger J.L. Induction of drug metabolism by forskolin: The role of the pregnane X receptor and the protein kinase a signal transduction pathway. J. Pharmacol. Exp. Ther. 2005;312:849–856. doi: 10.1124/jpet.104.076331. PubMed DOI
Ding X., Staudinger J.L. Repression of PXR-mediated induction of hepatic CYP3A gene expression by protein kinase C. Biochem. Pharmacol. 2005;69:867–873. doi: 10.1016/j.bcp.2004.11.025. PubMed DOI
Portbury A.L., Ronnebaum S.M., Zungu M., Patterson C., Willis M.S. Back to your heart: Ubiquitin proteasome system-regulated signal transduction. J. Mol. Cell. Cardiol. 2012;52:526–537. doi: 10.1016/j.yjmcc.2011.10.023. PubMed DOI PMC
Staudinger J.L., Xu C., Biswas A., Mani S. Post-translational modification of pregnane X receptor. Pharmacol. Res. 2011;64:4–10. doi: 10.1016/j.phrs.2011.02.011. PubMed DOI PMC
Biswas A., Pasquel D., Tyagi R.K., Mani S. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation. Biochem. Biophys. Res. Commun. 2011;406:371–376. doi: 10.1016/j.bbrc.2011.02.048. PubMed DOI PMC
Wang C., Tian L., Popov V.M., Pestell R.G. Acetylation and nuclear receptor action. J. Steroid Biochem. Mol. Biol. 2011;123:91–100. doi: 10.1016/j.jsbmb.2010.12.003. PubMed DOI PMC
Li T., Chiang J.Y. Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and suppression of small heterodimer partner gene expression. Drug Metab. Dispos. Biol. Fate Chem. 2006;34:756–764. doi: 10.1124/dmd.105.007575. PubMed DOI PMC
Kandel B.A., Thomas M., Winter S., Damm G., Seehofer D., Burk O., Schwab M., Zanger U.M. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARalpha in primary human hepatocytes. Biochim. Biophys. Acta. 2016;1859:1218–1227. doi: 10.1016/j.bbagrm.2016.03.007. PubMed DOI
Pavek P., Pospechova K., Svecova L., Syrova Z., Stejskalova L., Blazkova J., Dvorak Z., Blahos J. Intestinal cell-specific vitamin D receptor (VDR)-mediated transcriptional regulation of CYP3A4 gene. Biochem. Pharmacol. 2010;79:277–287. doi: 10.1016/j.bcp.2009.08.017. PubMed DOI
Goodwin B., Moore L.B., Stoltz C.M., McKee D.D., Kliewer S.A. Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol. Pharmacol. 2001;60:427–431. PubMed
Gerbal-Chaloin S., Pascussi J.M., Pichard-Garcia L., Daujat M., Waechter F., Fabre J.M., Carrere N., Maurel P. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab. Dispos. Biol. Fate Chem. 2001;29:242–251. PubMed
Geick A., Eichelbaum M., Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 2001;276:14581–14587. doi: 10.1074/jbc.M010173200. PubMed DOI
Light R.W., Lee Y.C.G. Textbook of Pleural Diseases. 3rd ed. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2016. 651p
Staudinger J., Liu Y., Madan A., Habeebu S., Klaassen C.D. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab. Dispos. Biol. Fate Chem. 2001;29:1467–1472. PubMed
Teng S., Jekerle V., Piquette-Miller M. Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab. Dispos. Biol. Fate Chem. 2003;31:1296–1299. doi: 10.1124/dmd.31.11.1296. PubMed DOI
Lemaire G., Mnif W., Pascussi J.M., Pillon A., Rabenoelina F., Fenet H., Gomez E., Casellas C., Nicolas J.C., Cavailles V., et al. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system. Toxicol. Sci. 2006;91:501–509. doi: 10.1093/toxsci/kfj173. PubMed DOI
Willson T.M., Kliewer S.A. PXR, CAR and drug metabolism. Nat. Rev. Drug Discov. 2002;1:259–266. doi: 10.1038/nrd753. PubMed DOI
Goodwin B., Redinbo M.R., Kliewer S.A. Regulation of cyp3a gene transcription by the pregnane x receptor. Annu. Rev. Pharmacol. Toxicol. 2002;42:1–23. doi: 10.1146/annurev.pharmtox.42.111901.111051. PubMed DOI
Watkins R.E., Maglich J.M., Moore L.B., Wisely G.B., Noble S.M., Davis-Searles P.R., Lambert M.H., Kliewer S.A., Redinbo M.R. 2.1 A crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry. 2003;42:1430–1438. doi: 10.1021/bi0268753. PubMed DOI
Staudinger J.L., Goodwin B., Jones S.A., Hawkins-Brown D., MacKenzie K.I., LaTour A., Liu Y., Klaassen C.D., Brown K.K., Reinhard J., et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. USA. 2001;98:3369–3374. doi: 10.1073/pnas.051551698. PubMed DOI PMC
Xie W., Radominska-Pandya A., Shi Y., Simon C.M., Nelson M.C., Ong E.S., Waxman D.J., Evans R.M. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl. Acad. Sci. USA. 2001;98:3375–3380. doi: 10.1073/pnas.051014398. PubMed DOI PMC
Webb G.J., Rahman S.R., Levy C., Hirschfield G.M. Low risk of hepatotoxicity from rifampicin when used for cholestatic pruritus: A cross-disease cohort study. Aliment. Pharmacol. Ther. 2018;47:1213–1219. doi: 10.1111/apt.14579. PubMed DOI PMC
Klaassen C.D., Slitt A.L. Regulation of hepatic transporters by xenobiotic receptors. Curr. Drug Metab. 2005;6:309–328. doi: 10.2174/1389200054633826. PubMed DOI
Wang J., Dai S., Guo Y., Xie W., Zhai Y. Biology of PXR: Role in drug-hormone interactions. EXCLI J. 2014;13:728–739. PubMed PMC
Tabb M.M., Sun A., Zhou C., Grun F., Errandi J., Romero K., Pham H., Inoue S., Mallick S., Lin M., et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J. Biol. Chem. 2003;278:43919–43927. doi: 10.1074/jbc.M303136200. PubMed DOI
Zhang B., Xie W., Krasowski M.D. PXR: A xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics. 2008;9:1695–1709. doi: 10.2217/14622416.9.11.1695. PubMed DOI PMC
Pascussi J.M., Robert A., Nguyen M., Walrant-Debray O., Garabedian M., Martin P., Pineau T., Saric J., Navarro F., Maurel P., et al. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J. Clin. Investig. 2005;115:177–186. doi: 10.1172/JCI21867. PubMed DOI PMC
Traber M.G. Vitamin E, nuclear receptors and xenobiotic metabolism. Arch. Biochem. Biophys. 2004;423:6–11. doi: 10.1016/j.abb.2003.10.009. PubMed DOI
Landes N., Pfluger P., Kluth D., Birringer M., Ruhl R., Bol G.F., Glatt H., Brigelius-Flohe R. Vitamin E activates gene expression via the pregnane X receptor. Biochem. Pharmacol. 2003;65:269–273. doi: 10.1016/S0006-2952(02)01520-4. PubMed DOI
Ruhl R. Induction of PXR-mediated metabolism by beta-carotene. Biochim. Biophys. Acta. 2005;1740:162–169. doi: 10.1016/j.bbadis.2004.11.013. PubMed DOI
Xie W., Tian Y. Xenobiotic receptor meets NF-kappaB, a collision in the small bowel. Cell Metab. 2006;4:177–178. doi: 10.1016/j.cmet.2006.08.004. PubMed DOI
Zhou C., Tabb M.M., Nelson E.L., Grun F., Verma S., Sadatrafiei A., Lin M., Mallick S., Forman B.M., Thummel K.E., et al. Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J. Clin. Investig. 2006;116:2280–2289. doi: 10.1172/JCI26283. PubMed DOI PMC
Pondugula S.R., Pavek P., Mani S. Pregnane X Receptor and Cancer: Context-Specificity is Key. Nucl. Recept. Res. 2016;3 doi: 10.11131/2016/101198. PubMed DOI PMC
Hakkola J., Rysa J., Hukkanen J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochim. Biophys. Acta. 2016;1859:1072–1082. doi: 10.1016/j.bbagrm.2016.03.012. PubMed DOI
Oladimeji P.O., Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol. Pharmacol. 2018;93:119–127. doi: 10.1124/mol.117.110155. PubMed DOI PMC
Rowland M.T.T. Clinical Pharmacokinetics: Concepts and Applications. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2011.
Gesheff M.G., Franzese C.J., Bliden K.P., Contino C.J., Rafeedheen R., Tantry U.S., Gurbel P.A. Review of pharmacokinetic and pharmacodynamic modeling and safety of proton pump inhibitors and aspirin. Expert Rev. Clin. Pharmacol. 2014;7:645–653. doi: 10.1586/17512433.2014.945428. PubMed DOI
De Jong H., Ropers D. Strategies for dealing with incomplete information in the modeling of molecular interaction networks. Brief. Bioinform. 2006;7:354–363. doi: 10.1093/bib/bbl034. PubMed DOI
Ramakrishnan R., DuBois D.C., Almon R.R., Pyszczynski N.A., Jusko W.J. Fifth-generation model for corticosteroid pharmacodynamics: Application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J. Pharmacokinet. Pharmacodyn. 2002;29:1–24. doi: 10.1023/A:1015765201129. PubMed DOI PMC
Ayyar V.S., Almon R.R., Jusko W.J., DuBois D.C. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids. Physiol. Rep. 2015;3 doi: 10.14814/phy2.12382. PubMed DOI PMC
Ayyar V.S., Sukumaran S., DuBois D.C., Almon R.R., Qu J., Jusko W.J. Receptor/gene/protein-mediated signaling connects methylprednisolone exposure to metabolic and immune-related pharmacodynamic actions in liver. J. Pharmacokinet. Pharmacodyn. 2018 doi: 10.1007/s10928-018-9585-x. PubMed DOI PMC
Jiang X., Dutreix C., Jarugula V., Rebello S., Won C.S., Sun H. An Exposure-Response Modeling Approach to Examine the Relationship between Potency of CYP3A Inducer and Plasma 4beta-Hydroxycholesterol in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2017;6:19–26. doi: 10.1002/cpdd.267. PubMed DOI
Leil T.A., Kasichayanula S., Boulton D.W., LaCreta F. Evaluation of 4beta-Hydroxycholesterol as a Clinical Biomarker of CYP3A4 Drug Interactions Using a Bayesian Mechanism-Based Pharmacometric Model. CPT Pharmacomet. Syst. Pharmacol. 2014;3:e120. doi: 10.1038/psp.2014.18. PubMed DOI PMC
Goto A., Tagawa Y., Kimura Y., Kogame A., Moriya Y., Amano N. Influence of the pharmacokinetic profile on the plasma glucose lowering effect of the PPARgamma agonist pioglitazone in Wistar fatty rats. Biopharm. Drug Dispos. 2017;38:381–388. doi: 10.1002/bdd.2076. PubMed DOI
Hu L., Jin Y., Li Y.G., Borel A. Population pharmacokinetic/pharmacodynamic assessment of pharmacological effect of a selective estrogen receptor beta agonist on total testosterone in healthy men. Clin. Pharmacol. Drug Dev. 2015;4:305–314. doi: 10.1002/cpdd.184. PubMed DOI
Yamashita F., Sasa Y., Yoshida S., Hisaka A., Asai Y., Kitano H., Hashida M., Suzuki H. Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data. PLoS ONE. 2013;8:e70330. doi: 10.1371/journal.pone.0070330. PubMed DOI PMC
Kolodkin A., Sahin N., Phillips A., Hood S.R., Bruggeman F.J., Westerhoff H.V., Plant N. Optimization of stress response through the nuclear receptor-mediated cortisol signalling network. Nat. Commun. 2013;4:1792. doi: 10.1038/ncomms2799. PubMed DOI PMC
Luke N.S., DeVito M.J., Shah I., El-Masri H.A. Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme induction. Bull. Math. Biol. 2010;72:1799–1819. doi: 10.1007/s11538-010-9508-5. PubMed DOI
Bailey I., Gibson G.G., Plant K., Graham M., Plant N. A PXR-mediated negative feedback loop attenuates the expression of CYP3A in response to the PXR agonist pregnenalone-16alpha-carbonitrile. PLoS ONE. 2011;6:e16703. doi: 10.1371/journal.pone.0016703. PubMed DOI PMC
Lamba V., Panetta J.C., Strom S., Schuetz E.G. Genetic predictors of interindividual variability in hepatic CYP3A4 expression. J. Pharmacol. Exp. Ther. 2010;332:1088–1099. doi: 10.1124/jpet.109.160804. PubMed DOI PMC
Slatter J.G., Templeton I.E., Castle J.C., Kulkarni A., Rushmore T.H., Richards K., He Y., Dai X., Cheng O.J., Caguyong M., et al. Compendium of gene expression profiles comprising a baseline model of the human liver drug metabolism transcriptome. Xenobiotica. 2006;36:938–962. doi: 10.1080/00498250600861728. PubMed DOI
Kotta-Loizou I., Patsouris E., Theocharis S. Pregnane X receptor polymorphisms associated with human diseases. Expert Opin. Ther. Targets. 2013;17:1167–1177. doi: 10.1517/14728222.2013.823403. PubMed DOI
Rana M., Devi S., Gourinath S., Goswami R., Tyagi R.K. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. Biochim. Biophys. Acta. 2016;1859:1183–1197. doi: 10.1016/j.bbagrm.2016.03.001. PubMed DOI
Li L., Li Z.Q., Deng C.H., Ning M.R., Li H.Q., Bi S.S., Zhou T.Y., Lu W. A mechanism-based pharmacokinetic/pharmacodynamic model for CYP3A1/2 induction by dexamethasone in rats. Acta Pharmacol. Sin. 2012;33:127–136. doi: 10.1038/aps.2011.161. PubMed DOI PMC
Harley E.M., Loftus G.R. MATLAB and graphical user interfaces: Tools for experimental management. Behav. Res. Methods Instrum. Comput. 2000;32:290–296. doi: 10.3758/BF03207797. PubMed DOI
Ghosh S., Matsuoka Y., Asai Y., Hsin K.Y., Kitano H. Software for systems biology: From tools to integrated platforms. Nat. Rev. Genet. 2011;12:821–832. doi: 10.1038/nrg3096. PubMed DOI
Sheiner L.B., Grasela T.H. Experience with NONMEM: Analysis of routine phenytoin clinical pharmacokinetic data. Drug Metab. Rev. 1984;15:293–303. doi: 10.3109/03602538409015067. PubMed DOI
Pascussi J.M., Drocourt L., Fabre J.M., Maurel P., Vilarem M.J. Dexamethasone induces pregnane X receptor and retinoid X receptor-alpha expression in human hepatocytes: Synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol. Pharmacol. 2000;58:361–372. doi: 10.1124/mol.58.2.361. PubMed DOI
Oakley R.H., Cidlowski J.A. Homologous down regulation of the glucocorticoid receptor: The molecular machinery. Crit. Rev. Eukaryot. Gene Expr. 1993;3:63–88. PubMed
Rigaud G., Roux J., Pictet R., Grange T. In vivo footprinting of rat TAT gene: Dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell. 1991;67:977–986. doi: 10.1016/0092-8674(91)90370-E. PubMed DOI
Plant N. The human cytochrome P450 sub-family: Transcriptional regulation, inter-individual variation and interaction networks. Biochim. Biophys. Acta. 2007;1770:478–488. doi: 10.1016/j.bbagen.2006.09.024. PubMed DOI
Raybon J.J., Pray D., Morgan D.G., Zoeckler M., Zheng M., Sinz M., Kim S. Pharmacokinetic-pharmacodynamic modeling of rifampicin-mediated Cyp3a11 induction in steroid and xenobiotic X receptor humanized mice. J. Pharmacol. Exp. Ther. 2011;337:75–82. doi: 10.1124/jpet.110.176677. PubMed DOI
Gibson G.G., Phillips A., Aouabdi S., Plant K., Plant N. Transcriptional regulation of the human pregnane-X receptor. Drug Metab. Rev. 2006;38:31–49. doi: 10.1080/03602530600569810. PubMed DOI
Hargrove J.L. Microcomputer-assisted kinetic modeling of mammalian gene expression. FASEB J. 1993;7:1163–1170. doi: 10.1096/fasebj.7.12.8375615. PubMed DOI
Alberts B. Molecular Biology of the Cell. 5th ed. Garland Science; New York, NY, USA: 2008.
Claus J., Friedmann E., Klingmuller U., Rannacher R., Szekeres T. Spatial aspects in the SMAD signaling pathway. J. Math. Biol. 2013;67:1171–1197. doi: 10.1007/s00285-012-0574-1. PubMed DOI
Friedmann E. PDE/ODE modeling and simulation to determine the role of diffusion in long-term and -range cellular signaling. BMC Biophys. 2015;8:10. doi: 10.1186/s13628-015-0024-8. PubMed DOI PMC
Thurley K., Gerecht D., Friedmann E., Hofer T. Three-Dimensional Gradients of Cytokine Signaling between T Cells. PLoS Comput. Biol. 2015;11:e1004206. doi: 10.1371/journal.pcbi.1004206. PubMed DOI PMC