Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction

. 2018 Jun 15 ; 19 (6) : . [epub] 20180615

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29914136

The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug⁻drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.

Zobrazit více v PubMed

Germain P., Staels B., Dacquet C., Spedding M., Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. PubMed DOI

Halilbasic E., Baghdasaryan A., Trauner M. Nuclear receptors as drug targets in cholestatic liver diseases. Clin. Liver Dis. 2013;17:161–189. doi: 10.1016/j.cld.2012.12.001. PubMed DOI PMC

Imai Y., Youn M.Y., Inoue K., Takada I., Kouzmenko A., Kato S. Nuclear receptors in bone physiology and diseases. Physiol. Rev. 2013;93:481–523. doi: 10.1152/physrev.00008.2012. PubMed DOI PMC

Saijo K., Crotti A., Glass C.K. Nuclear receptors, inflammation, and neurodegenerative diseases. Adv. Immunol. 2010;106:21–59. PubMed

Lazar M.A. Nuclear hormone receptors: From molecules to diseases. J. Investig. Med. 1999;47:364–368. PubMed

Di Masi A., De Marinis E., Ascenzi P., Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol. Asp. Med. 2009;30:297–343. doi: 10.1016/j.mam.2009.04.002. PubMed DOI

Moore D.D., Kato S., Xie W., Mangelsdorf D.J., Schmidt D.R., Xiao R., Kliewer S.A. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: Constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol. Rev. 2006;58:742–759. doi: 10.1124/pr.58.4.6. PubMed DOI

Smutny T., Mani S., Pavek P. Post-translational and post-transcriptional modifications of pregnane X receptor (PXR) in regulation of the cytochrome P450 superfamily. Curr. Drug Metab. 2013;14:1059–1069. doi: 10.2174/1389200214666131211153307. PubMed DOI PMC

Mackowiak B., Wang H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochim. Biophys. Acta. 2016;1859:1130–1140. doi: 10.1016/j.bbagrm.2016.02.006. PubMed DOI PMC

Marino M., di Masi A., Trezza V., Pallottini V., Polticelli F., Ascenzi P. Xenosensors CAR and PXR at work: Impact on statin metabolism. Curr. Drug Metab. 2011;12:300–311. doi: 10.2174/138920011795101859. PubMed DOI

Pavek P. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions. Front. Pharmacol. 2016;7:456. doi: 10.3389/fphar.2016.00456. PubMed DOI PMC

Blumberg B., Kang H., Bolado J., Jr., Chen H., Craig A.G., Moreno T.A., Umesono K., Perlmann T., De Robertis E.M., Evans R.M. BXR, an embryonic orphan nuclear receptor activated by a novel class of endogenous benzoate metabolites. Genes Dev. 1998;12:1269–1277. doi: 10.1101/gad.12.9.1269. PubMed DOI PMC

Blumberg B., Sabbagh W., Jr., Juguilon H., Bolado J., Jr., van Meter C.M., Ong E.S., Evans R.M. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 1998;12:3195–3205. doi: 10.1101/gad.12.20.3195. PubMed DOI PMC

Kliewer S.A., Moore J.T., Wade L., Staudinger J.L., Watson M.A., Jones S.A., McKee D.D., Oliver B.B., Willson T.M., Zetterstrom R.H., et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell. 1998;92:73–82. doi: 10.1016/S0092-8674(00)80900-9. PubMed DOI

Goodwin B., Hodgson E., Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 1999;56:1329–1339. doi: 10.1124/mol.56.6.1329. PubMed DOI

Pavek P., Dvorak Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr. Drug Metab. 2008;9:129–143. doi: 10.2174/138920008783571774. PubMed DOI

Kliewer S.A. The nuclear pregnane X receptor regulates xenobiotic detoxification. J. Nutr. 2003;133(Suppl. 7):2444S–2447S. doi: 10.1093/jn/133.7.2444S. PubMed DOI

Sinz M., Kim S., Zhu Z., Chen T., Anthony M., Dickinson K., Rodrigues A.D. Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr. Drug Metab. 2006;7:375–388. doi: 10.2174/138920006776873535. PubMed DOI

Hedrich W.D., Hassan H.E., Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm. Sin. B. 2016;6:413–425. doi: 10.1016/j.apsb.2016.07.016. PubMed DOI PMC

Prakash C., Zuniga B., Song C.S., Jiang S., Cropper J., Park S., Chatterjee B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. Nucl. Recept. Res. 2015;2:101178. doi: 10.11131/2015/101178. PubMed DOI PMC

Wei Y., Tang C., Sant V., Li S., Poloyac S.M., Xie W. A Molecular Aspect in the Regulation of Drug Metabolism: Does PXR-Induced Enzyme Expression Always Lead to Functional Changes in Drug Metabolism? Curr. Pharmacol. Rep. 2016;2:187–192. doi: 10.1007/s40495-016-0062-1. PubMed DOI PMC

Hustert E., Zibat A., Presecan-Siedel E., Eiselt R., Mueller R., Fuss C., Brehm I., Brinkmann U., Eichelbaum M., Wojnowski L., et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab. Dispos. Biol. Fate Chem. 2001;29:1454–1459. PubMed

Zhang J., Kuehl P., Green E.D., Touchman J.W., Watkins P.B., Daly A., Hall S.D., Maurel P., Relling M., Brimer C., et al. The human pregnane X receptor: Genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics. 2001;11:555–572. doi: 10.1097/00008571-200110000-00003. PubMed DOI

Brewer C.T., Chen T. PXR variants: The impact on drug metabolism and therapeutic responses. Acta Pharm. Sin. B. 2016;6:441–449. doi: 10.1016/j.apsb.2016.07.002. PubMed DOI PMC

Barwick J.L., Quattrochi L.C., Mills A.S., Potenza C., Tukey R.H., Guzelian P.S. Trans-species gene transfer for analysis of glucocorticoid-inducible transcriptional activation of transiently expressed human CYP3A4 and rabbit CYP3A6 in primary cultures of adult rat and rabbit hepatocytes. Mol. Pharmacol. 1996;50:10–16. PubMed

Yan J., Xie W. A brief history of the discovery of PXR and CAR as xenobiotic receptors. Acta Pharm. Sin. B. 2016;6:450–452. doi: 10.1016/j.apsb.2016.06.011. PubMed DOI PMC

Watkins R.E., Wisely G.B., Moore L.B., Collins J.L., Lambert M.H., Williams S.P., Willson T.M., Kliewer S.A., Redinbo M.R. The human nuclear xenobiotic receptor PXR: Structural determinants of directed promiscuity. Science. 2001;292:2329–2333. doi: 10.1126/science.1060762. PubMed DOI

Iyer M., Reschly E.J., Krasowski M.D. Functional evolution of the pregnane X receptor. Expert Opin. Drug Metab. Toxicol. 2006;2:381–397. doi: 10.1517/17425255.2.3.381. PubMed DOI PMC

Scheer N., Ross J., Kapelyukh Y., Rode A., Wolf C.R. In vivo responses of the human and murine pregnane X receptor to dexamethasone in mice. Drug Metab. Dispos. Biol. Fate Chem. 2010;38:1046–1053. doi: 10.1124/dmd.109.031872. PubMed DOI

Moore L.B., Parks D.J., Jones S.A., Bledsoe R.K., Consler T.G., Stimmel J.B., Goodwin B., Liddle C., Blanchard S.G., Willson T.M., et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem. 2000;275:15122–15127. doi: 10.1074/jbc.M001215200. PubMed DOI

Xie W., Barwick J.L., Downes M., Blumberg B., Simon C.M., Nelson M.C., Neuschwander-Tetri B.A., Brunt E.M., Guzelian P.S., Evans R.M. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature. 2000;406:435–439. doi: 10.1038/35019116. PubMed DOI

Kawana K., Ikuta T., Kobayashi Y., Gotoh O., Takeda K., Kawajiri K. Molecular mechanism of nuclear translocation of an orphan nuclear receptor, SXR. Mol. Pharmacol. 2003;63:524–531. doi: 10.1124/mol.63.3.524. PubMed DOI

Squires E.J., Sueyoshi T., Negishi M. Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. J. Biol. Chem. 2004;279:49307–49314. doi: 10.1074/jbc.M407281200. PubMed DOI

Saradhi M., Sengupta A., Mukhopadhyay G., Tyagi R.K. Pregnane and Xenobiotic Receptor (PXR/SXR) resides predominantly in the nuclear compartment of the interphase cell and associates with the condensed chromosomes during mitosis. Biochim. Biophys. Acta. 2005;1746:85–94. doi: 10.1016/j.bbamcr.2005.10.004. PubMed DOI

Ding X., Lichti K., Staudinger J.L. The mycoestrogen zearalenone induces CYP3A through activation of the pregnane X receptor. Toxicol. Sci. 2006;91:448–455. doi: 10.1093/toxsci/kfj163. PubMed DOI PMC

Synold T.W., Dussault I., Forman B.M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat. Med. 2001;7:584–590. doi: 10.1038/87912. PubMed DOI

Johnson D.R., Li C.W., Chen L.Y., Ghosh J.C., Chen J.D. Regulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) Mol. Pharmacol. 2006;69:99–108. PubMed

Handschin C., Meyer U.A. Induction of drug metabolism: The role of nuclear receptors. Pharmacol. Rev. 2003;55:649–673. doi: 10.1124/pr.55.4.2. PubMed DOI

Kliewer S.A., Goodwin B., Willson T.M. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocr. Rev. 2002;23:687–702. doi: 10.1210/er.2001-0038. PubMed DOI

Hariparsad N., Chu X., Yabut J., Labhart P., Hartley D.P., Dai X., Evers R. Identification of pregnane-X receptor target genes and coactivator and corepressor binding to promoter elements in human hepatocytes. Nucleic Acids Res. 2009;37:1160–1173. doi: 10.1093/nar/gkn1047. PubMed DOI PMC

Ourlin J.C., Lasserre F., Pineau T., Fabre J.M., Sa-Cunha A., Maurel P., Vilarem M.J., Pascussi J.M. The small heterodimer partner interacts with the pregnane X receptor and represses its transcriptional activity. Mol. Endocrinol. 2003;17:1693–1703. doi: 10.1210/me.2002-0383. PubMed DOI

Pavek P., Stejskalova L., Krausova L., Bitman M., Vrzal R., Dvorak Z. Rifampicin Does not Significantly Affect the Expression of Small Heterodimer Partner in Primary Human Hepatocytes. Front. Pharmacol. 2012;3:1. doi: 10.3389/fphar.2012.00001. PubMed DOI PMC

Ding X., Staudinger J.L. Induction of drug metabolism by forskolin: The role of the pregnane X receptor and the protein kinase a signal transduction pathway. J. Pharmacol. Exp. Ther. 2005;312:849–856. doi: 10.1124/jpet.104.076331. PubMed DOI

Ding X., Staudinger J.L. Repression of PXR-mediated induction of hepatic CYP3A gene expression by protein kinase C. Biochem. Pharmacol. 2005;69:867–873. doi: 10.1016/j.bcp.2004.11.025. PubMed DOI

Portbury A.L., Ronnebaum S.M., Zungu M., Patterson C., Willis M.S. Back to your heart: Ubiquitin proteasome system-regulated signal transduction. J. Mol. Cell. Cardiol. 2012;52:526–537. doi: 10.1016/j.yjmcc.2011.10.023. PubMed DOI PMC

Staudinger J.L., Xu C., Biswas A., Mani S. Post-translational modification of pregnane X receptor. Pharmacol. Res. 2011;64:4–10. doi: 10.1016/j.phrs.2011.02.011. PubMed DOI PMC

Biswas A., Pasquel D., Tyagi R.K., Mani S. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation. Biochem. Biophys. Res. Commun. 2011;406:371–376. doi: 10.1016/j.bbrc.2011.02.048. PubMed DOI PMC

Wang C., Tian L., Popov V.M., Pestell R.G. Acetylation and nuclear receptor action. J. Steroid Biochem. Mol. Biol. 2011;123:91–100. doi: 10.1016/j.jsbmb.2010.12.003. PubMed DOI PMC

Li T., Chiang J.Y. Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and suppression of small heterodimer partner gene expression. Drug Metab. Dispos. Biol. Fate Chem. 2006;34:756–764. doi: 10.1124/dmd.105.007575. PubMed DOI PMC

Kandel B.A., Thomas M., Winter S., Damm G., Seehofer D., Burk O., Schwab M., Zanger U.M. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARalpha in primary human hepatocytes. Biochim. Biophys. Acta. 2016;1859:1218–1227. doi: 10.1016/j.bbagrm.2016.03.007. PubMed DOI

Pavek P., Pospechova K., Svecova L., Syrova Z., Stejskalova L., Blazkova J., Dvorak Z., Blahos J. Intestinal cell-specific vitamin D receptor (VDR)-mediated transcriptional regulation of CYP3A4 gene. Biochem. Pharmacol. 2010;79:277–287. doi: 10.1016/j.bcp.2009.08.017. PubMed DOI

Goodwin B., Moore L.B., Stoltz C.M., McKee D.D., Kliewer S.A. Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol. Pharmacol. 2001;60:427–431. PubMed

Gerbal-Chaloin S., Pascussi J.M., Pichard-Garcia L., Daujat M., Waechter F., Fabre J.M., Carrere N., Maurel P. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab. Dispos. Biol. Fate Chem. 2001;29:242–251. PubMed

Geick A., Eichelbaum M., Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 2001;276:14581–14587. doi: 10.1074/jbc.M010173200. PubMed DOI

Light R.W., Lee Y.C.G. Textbook of Pleural Diseases. 3rd ed. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2016. 651p

Staudinger J., Liu Y., Madan A., Habeebu S., Klaassen C.D. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab. Dispos. Biol. Fate Chem. 2001;29:1467–1472. PubMed

Teng S., Jekerle V., Piquette-Miller M. Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab. Dispos. Biol. Fate Chem. 2003;31:1296–1299. doi: 10.1124/dmd.31.11.1296. PubMed DOI

Lemaire G., Mnif W., Pascussi J.M., Pillon A., Rabenoelina F., Fenet H., Gomez E., Casellas C., Nicolas J.C., Cavailles V., et al. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system. Toxicol. Sci. 2006;91:501–509. doi: 10.1093/toxsci/kfj173. PubMed DOI

Willson T.M., Kliewer S.A. PXR, CAR and drug metabolism. Nat. Rev. Drug Discov. 2002;1:259–266. doi: 10.1038/nrd753. PubMed DOI

Goodwin B., Redinbo M.R., Kliewer S.A. Regulation of cyp3a gene transcription by the pregnane x receptor. Annu. Rev. Pharmacol. Toxicol. 2002;42:1–23. doi: 10.1146/annurev.pharmtox.42.111901.111051. PubMed DOI

Watkins R.E., Maglich J.M., Moore L.B., Wisely G.B., Noble S.M., Davis-Searles P.R., Lambert M.H., Kliewer S.A., Redinbo M.R. 2.1 A crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry. 2003;42:1430–1438. doi: 10.1021/bi0268753. PubMed DOI

Staudinger J.L., Goodwin B., Jones S.A., Hawkins-Brown D., MacKenzie K.I., LaTour A., Liu Y., Klaassen C.D., Brown K.K., Reinhard J., et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. USA. 2001;98:3369–3374. doi: 10.1073/pnas.051551698. PubMed DOI PMC

Xie W., Radominska-Pandya A., Shi Y., Simon C.M., Nelson M.C., Ong E.S., Waxman D.J., Evans R.M. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl. Acad. Sci. USA. 2001;98:3375–3380. doi: 10.1073/pnas.051014398. PubMed DOI PMC

Webb G.J., Rahman S.R., Levy C., Hirschfield G.M. Low risk of hepatotoxicity from rifampicin when used for cholestatic pruritus: A cross-disease cohort study. Aliment. Pharmacol. Ther. 2018;47:1213–1219. doi: 10.1111/apt.14579. PubMed DOI PMC

Klaassen C.D., Slitt A.L. Regulation of hepatic transporters by xenobiotic receptors. Curr. Drug Metab. 2005;6:309–328. doi: 10.2174/1389200054633826. PubMed DOI

Wang J., Dai S., Guo Y., Xie W., Zhai Y. Biology of PXR: Role in drug-hormone interactions. EXCLI J. 2014;13:728–739. PubMed PMC

Tabb M.M., Sun A., Zhou C., Grun F., Errandi J., Romero K., Pham H., Inoue S., Mallick S., Lin M., et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J. Biol. Chem. 2003;278:43919–43927. doi: 10.1074/jbc.M303136200. PubMed DOI

Zhang B., Xie W., Krasowski M.D. PXR: A xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics. 2008;9:1695–1709. doi: 10.2217/14622416.9.11.1695. PubMed DOI PMC

Pascussi J.M., Robert A., Nguyen M., Walrant-Debray O., Garabedian M., Martin P., Pineau T., Saric J., Navarro F., Maurel P., et al. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J. Clin. Investig. 2005;115:177–186. doi: 10.1172/JCI21867. PubMed DOI PMC

Traber M.G. Vitamin E, nuclear receptors and xenobiotic metabolism. Arch. Biochem. Biophys. 2004;423:6–11. doi: 10.1016/j.abb.2003.10.009. PubMed DOI

Landes N., Pfluger P., Kluth D., Birringer M., Ruhl R., Bol G.F., Glatt H., Brigelius-Flohe R. Vitamin E activates gene expression via the pregnane X receptor. Biochem. Pharmacol. 2003;65:269–273. doi: 10.1016/S0006-2952(02)01520-4. PubMed DOI

Ruhl R. Induction of PXR-mediated metabolism by beta-carotene. Biochim. Biophys. Acta. 2005;1740:162–169. doi: 10.1016/j.bbadis.2004.11.013. PubMed DOI

Xie W., Tian Y. Xenobiotic receptor meets NF-kappaB, a collision in the small bowel. Cell Metab. 2006;4:177–178. doi: 10.1016/j.cmet.2006.08.004. PubMed DOI

Zhou C., Tabb M.M., Nelson E.L., Grun F., Verma S., Sadatrafiei A., Lin M., Mallick S., Forman B.M., Thummel K.E., et al. Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J. Clin. Investig. 2006;116:2280–2289. doi: 10.1172/JCI26283. PubMed DOI PMC

Pondugula S.R., Pavek P., Mani S. Pregnane X Receptor and Cancer: Context-Specificity is Key. Nucl. Recept. Res. 2016;3 doi: 10.11131/2016/101198. PubMed DOI PMC

Hakkola J., Rysa J., Hukkanen J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochim. Biophys. Acta. 2016;1859:1072–1082. doi: 10.1016/j.bbagrm.2016.03.012. PubMed DOI

Oladimeji P.O., Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol. Pharmacol. 2018;93:119–127. doi: 10.1124/mol.117.110155. PubMed DOI PMC

Rowland M.T.T. Clinical Pharmacokinetics: Concepts and Applications. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2011.

Gesheff M.G., Franzese C.J., Bliden K.P., Contino C.J., Rafeedheen R., Tantry U.S., Gurbel P.A. Review of pharmacokinetic and pharmacodynamic modeling and safety of proton pump inhibitors and aspirin. Expert Rev. Clin. Pharmacol. 2014;7:645–653. doi: 10.1586/17512433.2014.945428. PubMed DOI

De Jong H., Ropers D. Strategies for dealing with incomplete information in the modeling of molecular interaction networks. Brief. Bioinform. 2006;7:354–363. doi: 10.1093/bib/bbl034. PubMed DOI

Ramakrishnan R., DuBois D.C., Almon R.R., Pyszczynski N.A., Jusko W.J. Fifth-generation model for corticosteroid pharmacodynamics: Application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J. Pharmacokinet. Pharmacodyn. 2002;29:1–24. doi: 10.1023/A:1015765201129. PubMed DOI PMC

Ayyar V.S., Almon R.R., Jusko W.J., DuBois D.C. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids. Physiol. Rep. 2015;3 doi: 10.14814/phy2.12382. PubMed DOI PMC

Ayyar V.S., Sukumaran S., DuBois D.C., Almon R.R., Qu J., Jusko W.J. Receptor/gene/protein-mediated signaling connects methylprednisolone exposure to metabolic and immune-related pharmacodynamic actions in liver. J. Pharmacokinet. Pharmacodyn. 2018 doi: 10.1007/s10928-018-9585-x. PubMed DOI PMC

Jiang X., Dutreix C., Jarugula V., Rebello S., Won C.S., Sun H. An Exposure-Response Modeling Approach to Examine the Relationship between Potency of CYP3A Inducer and Plasma 4beta-Hydroxycholesterol in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2017;6:19–26. doi: 10.1002/cpdd.267. PubMed DOI

Leil T.A., Kasichayanula S., Boulton D.W., LaCreta F. Evaluation of 4beta-Hydroxycholesterol as a Clinical Biomarker of CYP3A4 Drug Interactions Using a Bayesian Mechanism-Based Pharmacometric Model. CPT Pharmacomet. Syst. Pharmacol. 2014;3:e120. doi: 10.1038/psp.2014.18. PubMed DOI PMC

Goto A., Tagawa Y., Kimura Y., Kogame A., Moriya Y., Amano N. Influence of the pharmacokinetic profile on the plasma glucose lowering effect of the PPARgamma agonist pioglitazone in Wistar fatty rats. Biopharm. Drug Dispos. 2017;38:381–388. doi: 10.1002/bdd.2076. PubMed DOI

Hu L., Jin Y., Li Y.G., Borel A. Population pharmacokinetic/pharmacodynamic assessment of pharmacological effect of a selective estrogen receptor beta agonist on total testosterone in healthy men. Clin. Pharmacol. Drug Dev. 2015;4:305–314. doi: 10.1002/cpdd.184. PubMed DOI

Yamashita F., Sasa Y., Yoshida S., Hisaka A., Asai Y., Kitano H., Hashida M., Suzuki H. Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data. PLoS ONE. 2013;8:e70330. doi: 10.1371/journal.pone.0070330. PubMed DOI PMC

Kolodkin A., Sahin N., Phillips A., Hood S.R., Bruggeman F.J., Westerhoff H.V., Plant N. Optimization of stress response through the nuclear receptor-mediated cortisol signalling network. Nat. Commun. 2013;4:1792. doi: 10.1038/ncomms2799. PubMed DOI PMC

Luke N.S., DeVito M.J., Shah I., El-Masri H.A. Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme induction. Bull. Math. Biol. 2010;72:1799–1819. doi: 10.1007/s11538-010-9508-5. PubMed DOI

Bailey I., Gibson G.G., Plant K., Graham M., Plant N. A PXR-mediated negative feedback loop attenuates the expression of CYP3A in response to the PXR agonist pregnenalone-16alpha-carbonitrile. PLoS ONE. 2011;6:e16703. doi: 10.1371/journal.pone.0016703. PubMed DOI PMC

Lamba V., Panetta J.C., Strom S., Schuetz E.G. Genetic predictors of interindividual variability in hepatic CYP3A4 expression. J. Pharmacol. Exp. Ther. 2010;332:1088–1099. doi: 10.1124/jpet.109.160804. PubMed DOI PMC

Slatter J.G., Templeton I.E., Castle J.C., Kulkarni A., Rushmore T.H., Richards K., He Y., Dai X., Cheng O.J., Caguyong M., et al. Compendium of gene expression profiles comprising a baseline model of the human liver drug metabolism transcriptome. Xenobiotica. 2006;36:938–962. doi: 10.1080/00498250600861728. PubMed DOI

Kotta-Loizou I., Patsouris E., Theocharis S. Pregnane X receptor polymorphisms associated with human diseases. Expert Opin. Ther. Targets. 2013;17:1167–1177. doi: 10.1517/14728222.2013.823403. PubMed DOI

Rana M., Devi S., Gourinath S., Goswami R., Tyagi R.K. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. Biochim. Biophys. Acta. 2016;1859:1183–1197. doi: 10.1016/j.bbagrm.2016.03.001. PubMed DOI

Li L., Li Z.Q., Deng C.H., Ning M.R., Li H.Q., Bi S.S., Zhou T.Y., Lu W. A mechanism-based pharmacokinetic/pharmacodynamic model for CYP3A1/2 induction by dexamethasone in rats. Acta Pharmacol. Sin. 2012;33:127–136. doi: 10.1038/aps.2011.161. PubMed DOI PMC

Harley E.M., Loftus G.R. MATLAB and graphical user interfaces: Tools for experimental management. Behav. Res. Methods Instrum. Comput. 2000;32:290–296. doi: 10.3758/BF03207797. PubMed DOI

Ghosh S., Matsuoka Y., Asai Y., Hsin K.Y., Kitano H. Software for systems biology: From tools to integrated platforms. Nat. Rev. Genet. 2011;12:821–832. doi: 10.1038/nrg3096. PubMed DOI

Sheiner L.B., Grasela T.H. Experience with NONMEM: Analysis of routine phenytoin clinical pharmacokinetic data. Drug Metab. Rev. 1984;15:293–303. doi: 10.3109/03602538409015067. PubMed DOI

Pascussi J.M., Drocourt L., Fabre J.M., Maurel P., Vilarem M.J. Dexamethasone induces pregnane X receptor and retinoid X receptor-alpha expression in human hepatocytes: Synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol. Pharmacol. 2000;58:361–372. doi: 10.1124/mol.58.2.361. PubMed DOI

Oakley R.H., Cidlowski J.A. Homologous down regulation of the glucocorticoid receptor: The molecular machinery. Crit. Rev. Eukaryot. Gene Expr. 1993;3:63–88. PubMed

Rigaud G., Roux J., Pictet R., Grange T. In vivo footprinting of rat TAT gene: Dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell. 1991;67:977–986. doi: 10.1016/0092-8674(91)90370-E. PubMed DOI

Plant N. The human cytochrome P450 sub-family: Transcriptional regulation, inter-individual variation and interaction networks. Biochim. Biophys. Acta. 2007;1770:478–488. doi: 10.1016/j.bbagen.2006.09.024. PubMed DOI

Raybon J.J., Pray D., Morgan D.G., Zoeckler M., Zheng M., Sinz M., Kim S. Pharmacokinetic-pharmacodynamic modeling of rifampicin-mediated Cyp3a11 induction in steroid and xenobiotic X receptor humanized mice. J. Pharmacol. Exp. Ther. 2011;337:75–82. doi: 10.1124/jpet.110.176677. PubMed DOI

Gibson G.G., Phillips A., Aouabdi S., Plant K., Plant N. Transcriptional regulation of the human pregnane-X receptor. Drug Metab. Rev. 2006;38:31–49. doi: 10.1080/03602530600569810. PubMed DOI

Hargrove J.L. Microcomputer-assisted kinetic modeling of mammalian gene expression. FASEB J. 1993;7:1163–1170. doi: 10.1096/fasebj.7.12.8375615. PubMed DOI

Alberts B. Molecular Biology of the Cell. 5th ed. Garland Science; New York, NY, USA: 2008.

Claus J., Friedmann E., Klingmuller U., Rannacher R., Szekeres T. Spatial aspects in the SMAD signaling pathway. J. Math. Biol. 2013;67:1171–1197. doi: 10.1007/s00285-012-0574-1. PubMed DOI

Friedmann E. PDE/ODE modeling and simulation to determine the role of diffusion in long-term and -range cellular signaling. BMC Biophys. 2015;8:10. doi: 10.1186/s13628-015-0024-8. PubMed DOI PMC

Thurley K., Gerecht D., Friedmann E., Hofer T. Three-Dimensional Gradients of Cytokine Signaling between T Cells. PLoS Comput. Biol. 2015;11:e1004206. doi: 10.1371/journal.pcbi.1004206. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace