Aspartate β-hydroxylase as a target for cancer therapy

. 2020 Aug 18 ; 39 (1) : 163. [epub] 20200818

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32811566

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000785 the European Regional Development Fund
LTAUSA18003 Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1604 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 32811566
PubMed Central PMC7433162
DOI 10.1186/s13046-020-01669-w
PII: 10.1186/s13046-020-01669-w
Knihovny.cz E-zdroje

As metastasis is a major cause of death in cancer patients, new anti-metastatic strategies are needed to improve cancer therapy outcomes. Numerous pathways have been shown to contribute to migration and invasion of malignant tumors. Aspartate β-hydroxylase (ASPH) is a key player in the malignant transformation of solid tumors by enhancing cell proliferation, migration, and invasion. ASPH also promotes tumor growth by stimulation of angiogenesis and immunosuppression. These effects are mainly achieved via the activation of Notch and SRC signaling pathways. ASPH expression is upregulated by growth factors and hypoxia in different human tumors and its inactivation may have broad clinical impact. Therefore, small molecule inhibitors of ASPH enzymatic activity have been developed and their anti-metastatic effect confirmed in preclinical mouse models. ASPH can also be targeted by monoclonal antibodies and has also been used as a tumor-associated antigen to induce both cluster of differentiation (CD) 8+ and CD4+ T cells in mice. The PAN-301-1 vaccine against ASPH has already been tested in a phase 1 clinical trial in patients with prostate cancer. In summary, ASPH is a promising target for anti-tumor and anti-metastatic therapy based on inactivation of catalytic activity and/or immunotherapy.

Zobrazit více v PubMed

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. PubMed

Coyle KM, Boudreau JE, Marcato P. Genetic mutations and epigenetic modifications: driving cancer and informing precision medicine. Biomed Res Int. 2017;2017:9620870. PubMed PMC

Lavaissiere L, Jia S, Nishiyama M, de la Monte S, Stern AM, Wands JR, et al. Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma. J Clin Invest. 1996;98:1313–1323. PubMed PMC

Ince N, de la Monte SM, Wands JR. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation. Cancer Res. 2000;60:1261–1266. PubMed

Aihara A, Huang C-K, Olsen MJ, Lin Q, Chung W, Tang Q, et al. A cell-surface β-hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma. Hepatology. 2014;60:1302–1313. PubMed PMC

Sturla L-M, Tong M, Hebda N, Gao J, Thomas J-M, Olsen M, et al. Aspartate-β-hydroxylase (ASPH): a potential therapeutic target in human malignant gliomas. Heliyon. 2016;2:e00203. PubMed PMC

Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, et al. Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett. 2019;449:87–98. PubMed PMC

Shimoda M, Tomimaru Y, Charpentier KP, Safran H, Carlson RI, Wands J. Tumor progression-related transmembrane protein aspartate-β-hydroxylase is a target for immunotherapy of hepatocellular carcinoma. J Hepatol. 2012;56:1129–1135. PubMed PMC

Tomimaru Y, Mishra S, Safran H, Charpentier KP, Martin W, De Groot AS, et al. Aspartate-β-hydroxylase induces epitope-specific T cell responses in hepatocellular carcinoma. Vaccine. 2015;33:1256–1266. PubMed PMC

Drakenberg T, Fernlund P, Roepstorff P, Stenflo J. Beta-hydroxyaspartic acid in vitamin K-dependent protein C. Proc Natl Acad Sci U S A. 1983;80:1802–1806. PubMed PMC

Derian CK, VanDusen W, Przysiecki CT, Walsh PN, Berkner KL, Kaufman RJ, et al. Inhibitors of 2-ketoglutarate-dependent dioxygenases block aspartyl beta-hydroxylation of recombinant human factor IX in several mammalian expression systems. J Biol Chem. 1989;264:6615–6618. PubMed

Stenflo J, Fernlund P. Beta-hydroxyaspartic acid in vitamin K-dependent plasma proteins from scorbutic and warfarin-treated Guinea pigs. FEBS Lett. 1984;168:287–292. PubMed

Sugo T, Fernlund P, Stenflo J. Erythro-beta-hydroxyaspartic acid in bovine factor IX and factor X. FEBS Lett. 1984;165:102–106. PubMed

Stenflo J, Lundwall A, Dahlbäck B. Beta-hydroxyasparagine in domains homologous to the epidermal growth factor precursor in vitamin K-dependent protein S. Proc Natl Acad Sci U S A. 1987;84:368–372. PubMed PMC

Ohlin AK, Landes G, Bourdon P, Oppenheimer C, Wydro R, Stenflo J. Beta-hydroxyaspartic acid in the first epidermal growth factor-like domain of protein C. its role in Ca2+ binding and biological activity. J Biol Chem. 1988;263:19240–19248. PubMed

Stenflo J, Ohlin AK, Owen WG, Schneider WJ. Beta-hydroxyaspartic acid or beta-hydroxyasparagine in bovine low density lipoprotein receptor and in bovine thrombomodulin. J Biol Chem. 1988;263:21–24. PubMed

Persson E, Selander M, Linse S, Drakenberg T, Ohlin AK, Stenflo J. Calcium binding to the isolated beta-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X. J Biol Chem. 1989;264:16897–16904. PubMed

Stenflo J, Holme E, Lindstedt S, Chandramouli N, Huang LH, Tam JP, et al. Hydroxylation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2-oxoglutarate-dependent dioxygenase. Proc Natl Acad Sci U S A. 1989;86:444–447. PubMed PMC

Gronke RS, VanDusen WJ, Garsky VM, Jacobs JW, Sardana MK, Stern AM, et al. Aspartyl beta-hydroxylase: in vitro hydroxylation of a synthetic peptide based on the structure of the first growth factor-like domain of human factor IX. Proc Natl Acad Sci U S A. 1989;86:3609–3613. PubMed PMC

Korioth F, Gieffers C, Frey J. Cloning and characterization of the human gene encoding aspartyl β-hydroxylase. Gene. 1994;150:395–399. PubMed

Feriotto G, Finotti A, Breveglieri G, Treves S, Zorzato F, Gambari R. Multiple levels of control of the expression of the human AβH-J-J locus encoding aspartyl-β-hydroxylase, junctin, and junctate. Ann N Y Acad Sci. 2006;1091:184–190. PubMed

Feriotto G, Finotti A, Breveglieri G, Treves S, Zorzato F, Gambari R. Transcriptional activity and Sp 1/3 transcription factor binding to the P1 promoter sequences of the human AβH-J-J locus: Sp regulation of the AβH-J-J locus P1 promoter. FEBS J. 2007;274:4476–4490. PubMed

Dinchuk JE, Henderson NL, Burn TC, Huber R, Ho SP, Link J, et al. Aspartyl beta -hydroxylase (Asph) and an evolutionarily conserved isoform of Asph missing the catalytic domain share exons with junctin. J Biol Chem. 2000;275:39543–39554. PubMed

Treves S, Feriotto G, Moccagatta L, Gambari R, Zorzato F. Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarco(endo)plasmic reticulum membrane. J Biol Chem. 2000;275:39555–39568. PubMed

Lahousse SA, Carter JJ, Xu XJ, Wands JR, de la Monte SM. Differential growth factor regulation of aspartyl-(asparaginyl)-β-hydroxylase family genes in SH-Sy5y human neuroblastoma cells. BMC Cell Biol. 2006;7:41. PubMed PMC

Hou G, Xu B, Bi Y, Wu C, Ru B, Sun B, et al. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: a brief update. Bosn J Basic Med Sci. 2018;18:297–304. PubMed PMC

Hong C-S, Kwon S-J, Kim DH. Multiple functions of junctin and junctate, two distinct isoforms of aspartyl beta-hydroxylase. Biochem Biophys Res Commun. 2007;362:1–4. PubMed

Lee J-H. Overexpression of humbug promotes malignant progression in human gastric cancer cells. Oncol Rep. 2008;19:795–800. PubMed

Dinchuk JE, Focht RJ, Kelley JA, Henderson NL, Zolotarjova NI, Wynn R, et al. Absence of post-translational aspartyl β-hydroxylation of epidermal growth factor domains in mice leads to developmental defects and an increased incidence of intestinal neoplasia. J Biol Chem. 2002;277:12970–12977. PubMed

Sepe PS, Lahousse SA, Gemelli B, Chang H, Maeda T, Wands JR, et al. Role of the aspartyl-asparaginyl-beta-hydroxylase gene in neuroblastoma cell motility. Lab Investig. 2002;82:881–891. PubMed

Jia S, VanDusen WJ, Diehl RE, Kohl NE, Dixon RA, Elliston KO, et al. cDNA cloning and expression of bovine aspartyl (asparaginyl) beta-hydroxylase. J Biol Chem. 1992;267:14322–14327. PubMed

Tang C, Hou Y, Wang H, Wang K, Xiang H, Wan X, et al. Aspartate β-hydroxylase disrupts mitochondrial DNA stability and function in hepatocellular carcinoma. Oncogenesis. 2017;6:e362. PubMed PMC

Gundogan F, Elwood G, Greco D, Rubin LP, Pinar H, Carlson RI, et al. Role of aspartyl-(asparaginyl) β-hydroxylase in placental implantation: relevance to early pregnancy loss. Hum Pathol. 2007;38:50–59. PubMed

Gundogan F, Bedoya A, Gilligan J, Lau E, Mark P, De Paepe ME, et al. siRNA inhibition of aspartyl-asparaginyl β-hydroxylase expression impairs cell motility, notch signaling, and fetal growth. Pathol Res Pract. 2011;207:545–553. PubMed PMC

Palumbo KS, Wands JR, Safran H, King T, Carlson RI, de la Monte SM. Human aspartyl (asparaginyl) beta-hydroxylase monoclonal antibodies: potential biomarkers for pancreatic carcinoma. Pancreas. 2002;25:39–44. PubMed

Maeda T, Taguchi K, Aishima S, Shimada M, Hintz D, LaRusso N, et al. Clinicopathological correlates of aspartyl (asparaginyl) β-hydroxylase over-expression in cholangiocarcinoma. Cancer Detect Prev. 2004;28:313–318. PubMed

Cantarini MC, de la Monte SM, Pang M, Tong M, D’Errico A, Trevisani F, et al. Aspartyl-asparagyl β hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms. Hepatology. 2006;44:446–457. PubMed

de la Monte SM, Tamaki S, Cantarini MC, Ince N, Wiedmann M, Carter JJ, et al. Aspartyl-(asparaginyl)-β-hydroxylase regulates hepatocellular carcinoma invasiveness. J Hepatol. 2006;44:971–983. PubMed

Yang H, Song K, Xue T, Xue X-P, Huyan T, Wang W, et al. The distribution and expression profiles of human aspartyl/asparaginyl beta-hydroxylase in tumor cell lines and human tissues. Oncol Rep. 2010;24:1257–1264. doi: 10.3892/or_00000980. PubMed DOI

Wang K, Liu J, Yan Z-L, Li J, Shi L-H, Cong W-M, et al. Overexpression of aspartyl-(asparaginyl)-beta-hydroxylase in hepatocellular carcinoma is associated with worse surgical outcome. Hepatology. 2010;52:164–173. PubMed

Dong X, Lin Q, Aihara A, Li Y, Huang C-K, Chung W, et al. Aspartate β-hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2014;6:1231–1248. PubMed PMC

Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, et al. ASPH-notch axis guided exosomal delivery of prometastatic secretome renders breast cancer multi-organ metastasis. Mol Cancer. 2019;18:156. PubMed PMC

Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, et al. Aspartate β-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway. J Hematol Oncol. 2019;12:144. PubMed PMC

Maeda T, Sepe P, Lahousse S, Tamaki S, Enjoji M, Wands JR, et al. Antisense oligodeoxynucleotides directed against aspartyl (asparaginyl) β-hydroxylase suppress migration of cholangiocarcinoma cells. J Hepatol. 2003;38:615–622. PubMed

Xian Z-H, Zhang S-H, Cong W-M, Yan H-X, Wang K, Wu M-C. Expression of aspartyl beta-hydroxylase and its clinicopathological significance in hepatocellular carcinoma. Mod Pathol. 2006;19:280–286. PubMed

Luu M, Sabo E, de la Monte SM, Greaves W, Wang J, Tavares R, et al. Prognostic value of aspartyl (asparaginyl)-β-hydroxylase/humbug expression in non–small cell lung carcinoma. Hum Pathol. 2009;40:639–644. PubMed PMC

Wang J, de la Monte SM, Sabo E, Kethu S, Tavares R, Branda M, et al. Prognostic value of humbug gene overexpression in stage II colon cancer. Hum Pathol. 2007;38:17–25. PubMed

Chang WH, Forde D, Lai AG. Dual prognostic role of 2-oxoglutarate-dependent oxygenases in ten cancer types: implications for cell cycle regulation and cell adhesion maintenance. Cancer Commun. 2019;39:23. PubMed PMC

Chen X, Zhao C, Guo B, Zhao Z, Wang H, Fang Z. Systematic profiling of alternative mRNA splicing signature for predicting glioblastoma prognosis. Front Oncol. 2019;9:928. PubMed PMC

Tomimaru Y, Koga H, Yano H, de la Monte S, Wands JR, Kim M. Upregulation of T-cell factor-4 isoform-responsive target genes in hepatocellular carcinoma. Liver Int. 2013;33:1100–1112. PubMed PMC

Amutha P, Rajkumar T. Role of insulin-like growth factor, insulin-like growth factor receptors, and insulin-like growth factor-binding proteins in ovarian cancer. Indian J Med Paediatr Oncol. 2017;38:198–206. doi: 10.4103/ijmpo.ijmpo_3_17. PubMed DOI PMC

Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5:691–701. PubMed

Bommer GT, Feng Y, Iura A, Giordano TJ, Kuick R, Kadikoy H, et al. IRS1 regulation by Wnt/β-catenin signaling and varied contribution of IRS1 to the neoplastic phenotype. J Biol Chem. 2010;285:1928–1938. PubMed PMC

Chung W, Kim M, de la Monte S, Longato L, Carlson R, Slagle BL, et al. Activation of signal transduction pathways during hepatic oncogenesis. Cancer Lett. 2016;370:1–9. PubMed PMC

Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, et al. Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA. Cancer Res. 2009;69:7357–7365. PubMed PMC

Benelli R, Costa D, Mastracci L, Grillo F, Olsen MJ, Barboro P, et al. Aspartate-β-hydroxylase: a promising target to limit the local invasiveness of colorectal cancer. Cancers. 2020;12:971. PubMed PMC

Yao W-F, Liu J-W, Huang D-S. MiR-200a inhibits cell proliferation and EMT by down-regulating the ASPH expression levels and affecting ERK and PI3K/Akt pathways in human hepatoma cells. Am J Transl Res. 2018;10:1117–1130. PubMed PMC

Humphries B, Yang C. The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget. 2015;6:6472–6498. PubMed PMC

Chen X, Jin P, Tang H, Zhang L. miR-135a acts as a tumor suppressor by targeting ASPH in endometrial cancer. Int J Clin Exp Pathol. 2019;12:3384–3389. PubMed PMC

Carter JJ, Tong M, Silbermann E, Lahousse SA, Ding FF, Longato L, et al. Ethanol impaired neuronal migration is associated with reduced aspartyl-asparaginyl-beta-hydroxylase expression. Acta Neuropathol. 2008;116:303–315. PubMed PMC

Borgas DL, Gao J-S, Tong M, Roper N, de la Monte SM. Regulation of aspartyl-(Asparaginyl)-β-hydroxylase protein expression and function by phosphorylation in hepatocellular carcinoma cells. J Nat Sci. 2015;1:e84. PubMed PMC

Borgas DL, Gao J-S, Tong M, de la Monte SM. Potential role of phosphorylation as a regulator of aspartyl-(asparaginyl)-β-hydroxylase: relevance to infiltrative spread of human hepatocellular carcinoma. Liver Cancer. 2015;4:139–153. PubMed PMC

Tong M, Gao J-S, Borgas D, de la Monte SM. Phosphorylation modulates aspartyl-(asparaginyl)-β-hydroxylase protein expression, catalytic activity and migration in human immature neuronal cerebellar cells. Cell Biol. 2013;6:133. doi: 10.4172/2324-9293.1000133. PubMed DOI PMC

Lawton M, Tong M, Gundogan F, Wands JR, de la Monte SM. Aspartyl-(asparaginyl) β-hydroxylase, hypoxia-inducible factor-1α and notch cross-talk in regulating neuronal motility. Oxidative Med Cell Longev. 2010;3:347–356. PubMed PMC

Brewitz L, Tumber A, Schofield CJ. Kinetic parameters of human aspartate/asparagine–β-hydroxylase suggest that it has a possible function in oxygen sensing. J Biol Chem. 2020;295:7826–7838. PubMed PMC

Barboro P, Benelli R, Tosetti F, Costa D, Capaia M, Astigiano S, et al. Aspartate β-hydroxylase targeting in castration resistant prostate cancer modulates the NOTCH/ HIF1α/GSK3β crosstalk. Carcinogenesis. 2020. 10.1093/carcin/bgaa053. PubMed

Wang MM. Notch signaling and notch signaling modifiers. Int J Biochem Cell Biol. 2011;43:1550–1562. PubMed PMC

Gridley T. Notch signaling and inherited disease syndromes. Hum Mol Genet. 2003;12:R9–13. PubMed

Huang Q, Li J, Zheng J, Wei A. The carcinogenic role of the notch signaling pathway in the development of hepatocellular carcinoma. J Cancer. 2019;10:1570–1579. PubMed PMC

Zou Q, Hou Y, Wang H, Wang K, Xing X, Xia Y, et al. Hydroxylase activity of ASPH promotes hepatocellular carcinoma metastasis through epithelial-to-mesenchymal transition pathway. EBioMedicine. 2018;31:287–298. PubMed PMC

Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, et al. Prometastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis. Cancer Lett. 2020;481:63–75. PubMed PMC

Paz H, Pathak N, Yang J. Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene. 2014;33:4193–4202. PubMed PMC

Iwagami Y, Huang C-K, Olsen MJ, Thomas J-M, Jang G, Kim M, et al. Aspartate β-hydroxylase modulates cellular senescence through glycogen synthase kinase 3β in hepatocellular carcinoma. Hepatology. 2016;63:1213–1226. PubMed PMC

Khan I, Tantray MA, Alam MS, Hamid H. Natural and synthetic bioactive inhibitors of glycogen synthase kinase. Eur J Med Chem. 2017;125:464–477. PubMed

Huang C-K, Iwagami Y, Zou J, Casulli S, Lu S, Nagaoka K, et al. Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Lett. 2018;429:1–10. PubMed PMC

Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998. PubMed

Chang RB, Beatty GL. The interplay between innate and adaptive immunity in cancer shapes the productivity of cancer immunosurveillance. J Leukoc Biol. 2020;108:363–76. PubMed PMC

Wellenstein MD, de Visser KE. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 2018;48:399–416. PubMed

Huyan T, Li Q, Ye L-J, Yang H, Xue X-P, Zhang M-J, et al. Inhibition of human natural killer cell functional activity by human aspartyl β-hydroxylase. Int Immunopharmacol. 2014;23:452–459. PubMed

Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SHE, et al. Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol. 2008;38:174–183. PubMed

Wang Y-C, He F, Feng F, Liu X-W, Dong G-Y, Qin H-Y, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 2010;70:4840–4849. PubMed

Zhao J-L, Huang F, He F, Gao C-C, Liang S-Q, Ma P-F, et al. Forced activation of notch in macrophages represses tumor growth by upregulating miR-125a and disabling tumor-associated macrophages. Cancer Res. 2016;76:1403–1415. PubMed

Amsen D, Helbig C, Backer RA. Notch in T cell differentiation: all things considered. Trends Immunol. 2015;36:802–814. PubMed

Kelliher MA, Roderick JE. NOTCH signaling in T-cell-mediated anti-tumor immunity and T-cell-based immunotherapies. Front Immunol. 2018;9:1718. PubMed PMC

Ayaz F, Osborne BA. Non-canonical notch signaling in cancer and immunity. Front Oncol. 2014;4:345. PubMed PMC

Janghorban M, Xin L, Rosen JM, Zhang XH-F. Notch signaling as a regulator of the tumor immune response: to target or not to target? Front Immunol. 2018;9:1649. PubMed PMC

Huang C-K, Iwagami Y, Aihara A, Chung W, de la Monte S, Thomas J-M, et al. Anti-tumor effects of second generation β-hydroxylase inhibitors on cholangiocarcinoma development and progression. PLoS One. 2016;11:e0150336. PubMed PMC

Nagaoka K, Ogawa K, Ji C, Cao KY, Bai X, Mulla J, et al. Targeting aspartate beta-hydroxylase with the small molecule inhibitor MO-I-1182 suppresses cholangiocarcinoma metastasis. Dig Dis Sci. 2020. 10.1007/s10620-020-06330-2. PubMed

Dahn H, Lawendel JS, Hoegger EF, Fischer R, Schenker E. Über eine neue Herstellung aromatisch substituierter Reduktone. Experientia. 1954;10:245–246.

Zheng G, Cox T, Tribbey L, Wang GZ, Iacoban P, Booher ME, et al. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci. 2014;5:658–665. PubMed PMC

Gambacorti-Passerini C, Coutre PL, Piazza R. The role of bosutinib in the treatment of chronic myeloid leukemia. Future Oncol. 2020;16:4395–4408. PubMed

Bailly C. Cepharanthine: an update of its mode of action, pharmacological properties and medical applications. Phytomedicine. 2019;62:152956. PubMed PMC

Andrews SP, Ball M, Wierschem F, Cleator E, Oliver S, Högenauer K, et al. Total synthesis of five thapsigargins: guaianolide natural products exhibiting sub-nanomolar SERCA inhibition. Chemistry. 2007;13:5688–5712. PubMed

Brewitz L, Tumber A, Thalhammer A, Salah E, Christensen KE, Schofield C. Synthesis of novel pyridine-carboxylates as small-molecule inhibitors of human aspartate/asparagine-β-hydroxylase. ChemMedChem. 2020;15:1139–1149. PubMed PMC

Graziano RF, Engelhardt JJ. Role of FcγRs in antibody-based cancer therapy. In: Ravetch JV, Nimmerjahn F, editors. Fc mediated activity of antibodies: structural and functional diversity. Cham: Springer International Publishing; 2019. p. 13–34..

Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11:823–836. PubMed

Makkouk A, Weiner GJ. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 2015;75:5–10. PubMed PMC

Noda T, Shimoda M, Ortiz V, Sirica AE, Wands JR. Immunization with aspartate-β-hydroxylase-loaded dendritic cells produces antitumor effects in a rat model of intrahepatic cholangiocarcinoma. Hepatology. 2012;55:86–97. PubMed PMC

Iwagami Y, Casulli S, Nagaoka K, Kim M, Carlson RI, Ogawa K, et al. Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma. Heliyon. 2017;3:e00407. PubMed PMC

Nordquist LT, Shore ND, Elist JJ, Oliver JC, Gannon W, Shahlaee AH, et al. Phase 1 open-label trial to evaluate the safety and immunogenicity of PAN-301-1, a novel nanoparticle therapeutic vaccine, in patients with biochemically relapsed prostate cancer. J Clin Oncol. 2018;36:e15166.

Yeung YA, Finney AH, Koyrakh IA, Lebowitz MS, Ghanbari HA, Wands JR, et al. Isolation and characterization of human antibodies targeting human aspartyl (asparaginyl) β-hydroxylase. Human Antibodies. 2007;16:163–176. PubMed

Xue T, Xue X-P, Huang Q-S, Wei L, Sun K, Xue T. Monoclonal antibodies against human aspartyl (asparaginyl) beta-hydroxylase developed by DNA immunization. Hybridoma. 2009;28:251–257. PubMed

Huyan T, Li Q, Dong D-D, Yang H, Xue X-P, Huang Q-S. Development of a novel anti-human aspartyl-(asparaginyl) β-hydroxylase monoclonal antibody with diagnostic and therapeutic potential. Oncol Lett. 2017;13:1539–1546. PubMed PMC

Revskaya E, Jiang Z, Morgenstern A, Bruchertseifer F, Sesay M, Walker S, et al. A radiolabeled fully human antibody to human aspartyl (asparaginyl) β-hydroxylase is a promising agent for imaging and therapy of metastatic breast cancer. Cancer Biother Radiopharm. 2017;32:57–65. PubMed PMC

Yang H, Wang H, Xue T, Xue X, Huyan T, Wang W, et al. Single-chain variable fragment antibody against human aspartyl/asparaginyl beta-hydroxylase expressed in recombinant Escherichia coli. Hybridoma. 2011;30:69–79. PubMed

Pfeffer I, Brewitz L, Krojer T, Jensen SA, Kochan GT, Kershaw NJ, et al. Aspartate/asparagine-β-hydroxylase crystal structures reveal an unexpected epidermal growth factor-like domain substrate disulfide pattern. Nat Commun. 2019;10:4910. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...