• This record comes from PubMed

Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants

. 2020 Jun 30 ; 117 (26) : 15354-15362. [epub] 20200615

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.

See more in PubMed

Kirchhoff H., Diffusion of molecules and macromolecules in thylakoid membranes. Biochim. Biophys. Acta 1837, 495–502 (2014). PubMed

Metzler R., Jeon J. H., Cherstvy A. G., Non-Brownian diffusion in lipid membranes: Experiments and simulations. Biochim. Biophys. Acta 1858, 2451–2467 (2016). PubMed

Saxton M. J., Jacobson K., Single-particle tracking: Applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997). PubMed

Letts J. A., Fiedorczuk K., Sazanov L. A., The architecture of respiratory supercomplexes. Nature 537, 644–648 (2016). PubMed

Yadav K. N. S. et al. ., Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochim. Biophys. Acta Bioenerg. 1858, 12–20 (2017). PubMed

Steinbeck J. et al. ., Structure of a PSI-LHCI-cyt b6f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions. Proc. Natl. Acad. Sci. U.S.A. 115, 10517–10522 (2018). PubMed PMC

Staehelin L. A., “Chloroplast structure and supramolecular organization of photosynthetic membranes” in Photosynthesis III, Encyclopedia of Plant Physiology 19, Staehelin L. A., Arntzen C. J., Eds. (Springer, 1986), pp. 1–84.

Andersson B., Anderson J. M., Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta 593, 427–440 (1980). PubMed

Albertsson P., A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6, 349–358 (2001). PubMed

Kirchhoff H., Li M., Puthiyaveetil S., Sublocalization of cytochrome b6f complexes in photosynthetic membranes. Trends Plant Sci. 22, 574–582 (2017). PubMed

Daum B., Kühlbrandt W., Electron tomography of plant thylakoid membranes. J. Exp. Bot. 62, 2393–2402 (2011). PubMed

Austin J. R. 2nd, Staehelin L. A., Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol. 155, 1601–1611 (2011). PubMed PMC

Kaftan D., Brumfeld V., Nevo R., Scherz A., Reich Z., From chloroplasts to photosystems: In situ scanning force microscopy on intact thylakoid membranes. EMBO J. 21, 6146–6153 (2002). PubMed PMC

Bussi Y. et al. ., Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl. Acad. Sci. U.S.A. 116, 22366–22375 (2019). PubMed PMC

Anderson J. M., Chow W. S., De Las Rivas J., Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: The grana enigma. Photosynth. Res. 98, 575–587 (2008). PubMed

Kirchhoff H., Molecular crowding and order in photosynthetic membranes. Trends Plant Sci. 13, 201–207 (2008). PubMed

Anderson J. M., Boardman N. K., Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Bibl. Laeger 112, 403–421 (1966). PubMed

Whitmarsh J., “Mobile electron carriers in thylakoids” in Encyclopedia of Plant Physiology 19, Pirson A., Zimmermann M. H., Eds. (Springer, 1986), pp. 508–527.

Haehnel W., Photosynthetic electron transport in higher plants. Annu. Rev. Plant Physiol. 35, 659–693 (1984).

Joliot P., Lavergne J., Béal D., Plastoquinone compartimentation in chloroplasts. I.Evidence for domains with different rates of photo-reduction. Biochim. Biophys. Acta 1101, 1–12 (1992).

Kirchhoff H., Horstmann S., Weis E., Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim. Biophys. Acta 1459, 148–168 (2000). PubMed

Kirchhoff H. et al. ., Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. U.S.A. 108, 20248–20253 (2011). PubMed PMC

Armbruster U. et al. ., Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25, 2661–2678 (2013). PubMed PMC

Pribil M. et al. ., Fine-tuning of photosynthesis requires CURVATURE THYLAKOID1-mediated thylakoid plasticity. Plant Physiol. 176, 2351–2364 (2018). PubMed PMC

Rintamäki E., Martinsuo P., Pursiheimo S., Aro E. M., Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 97, 11644–11649 (2000). PubMed PMC

Baker N. R., Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008). PubMed

Kramer D. M., Johnson G., Kiirats O., Edwards G. E., New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 79, 209–218 (2004). PubMed

Livingston A. K., Cruz J. A., Kohzuma K., Dhingra A., Kramer D. M., An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22, 221–233 (2010). PubMed PMC

Lavergne J., Trissl H.-W., Theory of fluorescence induction in photosystem II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys. J. 68, 2474–2492 (1995). PubMed PMC

Lavorel J., Etienne A.-L., “In vivo chlorophyll fluorescence” in Primary Processes of Photosynthesis, Topics in Photosynthesis, Barber J., Ed. (Elsevier, Amsterdam, 1977), Vol. 2, pp. 203–268.

Feilke K., Yu Q., Beyer P., Sétif P., Krieger-Liszkay A., In vitro analysis of the plastid terminal oxidase in photosynthetic electron transport. Biochim. Biophys. Acta 1837, 1684–1690 (2014). PubMed

Herbstová M., Tietz S., Kinzel C., Turkina M. V., Kirchhoff H., Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl. Acad. Sci. U.S.A. 109, 20130–20135 (2012). PubMed PMC

Puthiyaveetil S. et al. ., Compartmentalization of the protein repair machinery in photosynthetic membranes. Proc. Natl. Acad. Sci. U.S.A. 111, 15839–15844 (2014). PubMed PMC

Koochak H., Puthiyaveetil S., Mullendore D. L., Li M., Kirchhoff H., The structural and functional domains of plant thylakoid membranes. Plant J. 97, 412–429 (2019). PubMed

Mitchell R., Spillmann A., Haehnel W., Plastoquinol diffusion in linear photosynthetic electron transport. Biophys. J. 58, 1011–1024 (1990). PubMed PMC

Britt R. D., “Oxygen evolution” in Oxygenic Photosynthesis: The Light Reactions, Ort D., Yocum C. F., Eds. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996), pp. 137–164.

Diner A. B., Babcock G. T., “Structure, dynamics, and energy conversion efficiency in photosystem II” in Oxygenic Photosynthesis: The Light Reactions, Ort D., Yocum C. F., Eds. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996), pp. 137–164.

Tikhonov A. N., pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res. 116, 511–534 (2013). PubMed

Haehnel W., The reduction kinetics of chlorophyll aI as an indicator for proton uptake between the light reactions in chloroplasts. Biochim. Biophys. Acta 440, 506–521 (1976). PubMed

Kirchhoff H., Schöttler M. A., Maurer J., Weis E., Plastocyanin redox kinetics in spinach chloroplasts: Evidence for disequilibrium in the high potential chain. Biochim. Biophys. Acta 1659, 63–72 (2004). PubMed

Flori S. et al. ., Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nature Comm. 8, 15885 (2017). PubMed PMC

Selak M. A., Whitmarsh J., Charge transfer from photosystem I to the cytochrome b/f complex: Diffusion and membrane lateral heterogeneity. Photochem. Photobiol. 39, 485–490 (1984).

Whitmarsh J., Bowyer J. R., Crofts A. R., Modification of the apparent redox reaction between cytochrome f and the Rieske iron-sulfur protein. Biochim. Biophys. Acta 682, 404–412 (1982).

Heimann S., Ponamarev M. V., Cramer W. A., Movement of the Rieske iron-sulfur protein in the p-side bulk aqueous phase: Effect of lumenal viscosity on redox reactions of the cytochrome b6f complex. Biochemistry 39, 2692–2699 (2000). PubMed

Kovalenko I. B. et al. ., Multiparticle Brownian dynamics simulation of experimental kinetics of cytochrome bf oxidation and photosystem I reduction by plastocyanin. Physiol. Plant. 161, 88–96 (2017). PubMed

Tremmel I. G., Kirchhoff H., Weis E., Farquhar G. D., Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim. Biophys. Acta 1607, 97–109 (2003). PubMed

Zhu X.-G., Long S. P., Ort D. R., Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010). PubMed

Wood W. H. J. et al. ., Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nat. Plants 4, 116–127 (2018). PubMed

Porra R. J., Thompson W. A., Kriedermann P. E., Determination of accurate extinction coefficient and simultaneous equations for essaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).

Tietz S. et al. ., Functional implications of photosystem II crystal formation in photosynthetic membranes. J. Biol. Chem. 290, 14091–14106 (2015). PubMed PMC

Genty B., Briantais J.-M., Baker N. R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).

Schreiber U., Klughammer C., Analysis of photosystem I donor and acceptor sides with a new type of online-deconvolution kinetic LED-array spectrometer. Plant Cell Physiol. 57, 1454–1467 (2016). PubMed

Rappaport F., Béal D., Joliot A., Joliot P., On the advantages of using green light to study fluorescence yield changes in leaves. Biochim. Biophys. Acta 1767, 56–65 (2007). PubMed

Kirchhoff H., Borinski M., Lenhert S., Chi L., Büchel C., Transversal and lateral exciton energy transfer in grana thylakoids of spinach. Biochemistry 43, 14508–14516 (2004). PubMed

Zechmann B., Zellnig G., Microwave-assisted rapid plant sample preparation for transmission electron microscopy. J. Microsc. 233, 258–268 (2009). PubMed

Staehelin L. A., Chloroplast structure: From chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth. Res. 76, 185–196 (2003). PubMed

Berg S. P., Nesbitt D. M., Chromium oxalate: A new spin label broadening agent for use with thylakoids. Biochim. Biophys. Acta 548, 608–615 (1979). PubMed

Nesbitt D. M., Berg S. P., Proton involvement with the light-induced hindrance of spin label motion in the lumen of spinach thylakoids. Biochim. Biophys. Acta 593, 353–361 (1980). PubMed

Trubitsin B. V., Tikhonov A. N., Determination of a transmembrane pH difference in chloroplasts with a spin label tempamine. J. Magn. Reson. 163, 257–269 (2003). PubMed

Fragata M., Ohnishi S., Asada K., Ito T., Takahashi M., Lateral diffusion of plastocyanin in multilamellar mixed-lipid-bilayers studied by fluorescence recovery after photobleaching. Biochem. 23, 4044–4051 (1984).

Sujak A., Drepper F., Haehnel W., Spectroscopic studies on electron transfer between plastocyanin and cytochrome b6f complex. J. Photochem. Photobiol. B 74, 135–143 (2004). PubMed

Finazzi G., Sommer F., Hippler M., Release of oxidized plastocyanin from photosystem I limits electron transfer between photosystem I and cytochrome b6f complex in vivo. Proc. Natl. Acad. Sci. U.S.A. 102, 7031–7036 (2005). PubMed PMC

Hope A. B., Electron transfers amongst cytochrome f, plastocyanin and photosystem I: Kinetics and mechanisms. Biochim. Biophys. Acta 1456, 5–26 (2000). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...