Three-dimensional echocardiographic left ventricular strain analysis in Fabry disease: correlation with heart failure severity, myocardial scar, and impact on long-term prognosis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
University Hospital in Prague
Charles University
PubMed
37309820
PubMed Central
PMC10667034
DOI
10.1093/ehjci/jead121
PII: 7194866
Knihovny.cz E-zdroje
- Klíčová slova
- 3D echocardiography, Fabry disease, cardiovascular magnetic resonance, heart failure, myocardial strain,
- MeSH
- dysfunkce levé srdeční komory * diagnostické zobrazování etiologie MeSH
- echokardiografie trojrozměrná * metody MeSH
- echokardiografie metody MeSH
- Fabryho nemoc * komplikace diagnostické zobrazování MeSH
- funkce levé komory srdeční MeSH
- gadolinium MeSH
- jizva diagnostické zobrazování MeSH
- kontrastní látky MeSH
- lidé MeSH
- prognóza MeSH
- reprodukovatelnost výsledků MeSH
- srdeční selhání * diagnostické zobrazování etiologie MeSH
- tepový objem MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gadolinium MeSH
- kontrastní látky MeSH
AIMS: Fabry disease (FD) is a multisystemic lysosomal storage disorder caused by a defect in the alpha-galactosidase A gene that manifests as a phenocopy of hypertrophic cardiomyopathy. We assessed the echocardiographic 3D left ventricular (LV) strain of patients with FD in relation to heart failure severity using natriuretic peptides, the presence of a cardiovascular magnetic resonance (CMR) late gadolinium enhancement scar, and long-term prognosis. METHODS AND RESULTS: 3D echocardiography was feasible in 75/99 patients with FD [aged 47 ± 14 years, 44% males, LV ejection fraction (EF) 65 ± 6% and 51% with hypertrophy or concentric remodelling of the LV]. Long-term prognosis (death, heart failure decompensation, or cardiovascular hospitalization) was assessed over a median follow-up of 3.1 years. A stronger correlation was observed for N-terminal pro-brain natriuretic peptide levels with 3D LV global longitudinal strain (GLS, r = -0.49, P < 0.0001) than with 3D LV global circumferential strain (GCS, r = -0.38, P < 0.001) or 3D LVEF (r = -0.25, P = 0.036). Individuals with posterolateral scar on CMR had lower posterolateral 3D circumferential strain (CS; P = 0.009). 3D LV-GLS was associated with long-term prognosis [adjusted hazard ratio 0.85 (confidence interval 0.75-0.95), P = 0.004], while 3D LV-GCS and 3D LVEF were not (P = 0.284 and P = 0.324). CONCLUSION: 3D LV-GLS is associated with both heart failure severity measured by natriuretic peptide levels and long-term prognosis. Decreased posterolateral 3D CS reflects typical posterolateral scarring in FD. Where feasible, 3D-strain echocardiography can be used for a comprehensive mechanical assessment of the LV in patients with FD.
Zobrazit více v PubMed
Ortiz A, Germain DP, Desnick RJ, Politei J, Mauer M, Burlina A et al. Fabry disease revisited: management and treatment recommendations for adult patients. Mol Genet Metab 2018;123:416–27. PubMed
Desnick RJ, Brady R, Barranger J, Collins AJ, Germain DP, Goldman M et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med 2003;138:338–46. PubMed
Pieroni M, Moon JC, Arbustini E, Barriales-Villa R, Camporeale A, Vujkovac AC et al. Cardiac involvement in Fabry disease: JACC review topic of the week. J Am Coll Cardiol 2021;77:922–36. PubMed
Linhart A, Lubanda JC, Palecek T, Bultas J, Karetová D, Ledvinová J et al. Cardiac manifestations in Fabry disease. J Inherit Metab Dis 2001;24(Suppl. 2):75–83; discussion 65. PubMed
Perry R, Shah R, Saiedi M, Patil S, Ganesan A, Linhart A et al. The role of cardiac imaging in the diagnosis and management of Anderson-Fabry disease. JACC Cardiovasc Imaging 2019;12:1230–42. PubMed
Rob D, Marek J, Dostalova G, Linhart A. Heart failure in Fabry disease revisited: application of current heart failure guidelines and recommendations. ESC Heart Fail 2022;9:4043–52. PubMed PMC
Linhart A, Germain DP, Olivotto I, Akhtar MM, Anastasakis A, Hughes D et al. An expert consensus document on the management of cardiovascular manifestations of Fabry disease. Eur J Heart Fail 2020;22:1076–96. PubMed
Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 2012;13:1–46. PubMed
Muraru D, Niero A, Rodriguez-Zanella H, Cherata D, Badano L. Three-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc Diagn Ther 2018;8:101–17. PubMed PMC
Nabeshima Y, Seo Y, Takeuchi M. A review of current trends in three-dimensional analysis of left ventricular myocardial strain. Cardiovasc Ultrasound 2020;18:23. PubMed PMC
Luis SA, Yamada A, Khandheria BK, Speranza V, Benjamin A, Ischenko M et al. Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: a comparative study to three-dimensional echocardiography. J Am Soc Echocardiogr 2014;27:285–91. PubMed
Kleijn SA, Brouwer WP, Aly MFA, Rüssel IK, de Roest GJ, Beek AM et al. Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. Eur Heart J Cardiovasc Imaging 2012;13:834–9. PubMed
Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2009;2:451–9. PubMed
Beck M. The Mainz Severity Score Index (MSSI): development and validation of a system for scoring the signs and symptoms of Fabry disease. Acta Paediatr Suppl 2006;95:43–6. PubMed
Kasahara S, Sakata Y, Nochioka K, Miura M, Abe R, Sato M et al. Conversion formula from B-type natriuretic peptide to N-terminal proBNP values in patients with cardiovascular diseases. Int J Cardiol 2019;280:184–9. PubMed
Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31–41. PubMed
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–12. PubMed PMC
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015;16:233–70. PubMed
Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P et al. Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging 2012;13:730–8. PubMed
Shanks M, Thompson RB, Paterson ID, Putko B, Khan A, Chan A et al. Systolic and diastolic function assessment in Fabry disease patients using speckle-tracking imaging and comparison with conventional echocardiographic measurements. J Am Soc Echocardiogr 2013;26:1407–14. PubMed
Voilliot D, Huttin O, Hammache N, Filippetti L, Vaugrenard T, Aliot E et al. Impact of global and segmental hypertrophy on two-dimensional strain derived from three-dimensional echocardiography in hypertrophic cardiomyopathy: comparison with healthy subjects. J Am Soc Echocardiogr 2015;28:1093–102. PubMed
Spinelli L, Giugliano G, Imbriaco M, Esposito G, Nappi C, Riccio E et al. Left ventricular radial strain impairment precedes hypertrophy in Anderson-Fabry disease. Int J Cardiovasc Imaging 2020;36:1465–76. PubMed
Lu D-Y, Huang W-M, Wang W-T, Hung S-C, Sung S-H, Chen C-H et al. Reduced global longitudinal strain as a marker for early detection of Fabry cardiomyopathy. Eur Heart J Cardiovasc Imaging 2022;23:487–95. PubMed
Esposito R, Galderisi M, Santoro C, Imbriaco M, Riccio E, Maria Pellegrino A et al. Prominent longitudinal strain reduction of left ventricular basal segments in treatment-naïve Anderson-Fabry disease patients. Eur Heart J Cardiovasc Imaging 2019;20:438–45. PubMed
Krämer J, Niemann M, Liu D, Hu K, Machann W, Beer M et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease. Eur Heart J 2013;34:1587–96. PubMed
Thorstensen A, Dalen H, Hala P, Kiss G, D’hooge J, Torp H et al. Three-dimensional echocardiography in the evaluation of global and regional function in patients with recent myocardial infarction: a comparison with magnetic resonance imaging. Echocardiography 2013;30:682–92. PubMed
Morris DA, Blaschke D, Canaan-Kühl S, Krebs A, Knobloch G, Walter TC et al. Global cardiac alterations detected by speckle-tracking echocardiography in Fabry disease: left ventricular, right ventricular, and left atrial dysfunction are common and linked to worse symptomatic status. Int J Cardiovasc Imaging 2015;31:301–13. PubMed
Medvedofsky D, Maffessanti F, Weinert L, Tehrani DM, Narang A, Addetia K et al. 2D and 3D echocardiography-derived indices of left ventricular function and shape: relationship with mortality. JACC Cardiovasc Imaging 2018;11:1569–79. PubMed PMC
Medvedofsky D, Lang RM, Weinert L, Tehrani DM, Narang A, Mor-Avi V. 3D echocardiographic global longitudinal strain can identify patients with mildly-to-moderately reduced ejection fraction at higher cardiovascular risk. Int J Cardiovasc Imaging 2019;35:1573–9. PubMed
Zada M, Lo Q, Boyd AC, Bradley S, Devine K, Denaro CP et al. Basal segmental longitudinal strain: a marker of subclinical myocardial involvement in Anderson-Fabry disease. J Am Soc Echocardiogr 2021;34:405–413.e2. PubMed
de Knegt MC, Fuchs A, Weeke P, Møgelvang R, Hassager C, Kofoed KF. Optimisation of coronary vascular territorial 3D echocardiographic strain imaging using computed tomography: a feasibility study using image fusion. Int J Cardiovasc Imaging 2016;32:1715–23. PubMed