miR-183/96/182 cluster is an important morphogenetic factor targeting PAX6 expression in differentiating human retinal organoids

. 2020 Sep 01 ; () : . [epub] 20200901

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32875669

Grantová podpora
LM2018129 MEYS CR
Czech-BioImaging large RI project
CZ.02.1.01/0.0/0.0/16_026/0008451 European Regional Development Fund - Project INBIO
MUNI/G/1391/2018 Grant Agency of Masaryk University (GAMU)
Faculty of Medicine MU
Brno Ph.D. Talent

MicroRNAs (miRNAs), a class of small, noncoding RNA molecules represent important regulators of gene expression. Recent reports have implicated their role in the cell specification process acting as "fine-tuners" to ensure the precise gene expression at the specific stage of cell differentiation. Here, we used retinal organoids differentiated from human pluripotent stem cells (hPSCs) as a model to closely investigate the role of a sensory organ-specific and evolutionary conserved miR-183/96/182 cluster. Using a miRNA tough decoy approach, we inhibited the miR-183/96/182 cluster in hPSCs. Inhibition of the miRNA cluster resulted in an increased expansion of neuroepithelium leading to abnormal "bulged" neural retina in organoids, associated with upregulation of neural-specific and retinal-specific genes. Importantly, we identified PAX6, a well-known essential gene in neuroectoderm specification, as a target of the miR-183/96/182 cluster members. Taken together, the miR-183/96/182 cluster not only represents an important regulator of PAX6 expression, but it also plays a crucial role in retinal tissue morphogenesis.

Zobrazit více v PubMed

Dambal S, Shah M, Mihelich B, Nonn L. The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res. 2015;43:7173-7188.

Hollensen AK, Bak RO, Haslund D, Mikkelsen JG. Suppression of microRNAs by dual-targeting and clustered tough decoy inhibitors. RNA Biol. 2013;10:406-414.

Barta T, Peskova L, Hampl A. miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep. 2016;6:36625.

Eshtad S, Mavajian Z, Rudd SG, et al. hMYH and hMTH1 cooperate for survival in mismatch repair defective T-cell acute lymphoblastic leukemia. Oncogenesis. 2016;5:e275.

Peskova L, Cerna K, Oppelt J, Mraz M, Barta T. Oct4-mediated reprogramming induces embryonic-like microRNA expression signatures in human fibroblasts. Sci Rep. 2019;9:15759.

Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.

Hallam D, Hilgen G, Dorgau B, et al. Human-induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency. Stem Cells. 2018;36:1535-1551.

Barta T, Peskova L, Collin J, et al. Brief report: inhibition of miR-145 enhances reprogramming of human dermal fibroblasts to induced pluripotent stem cells. Stem Cells. 2016;34:246-251.

Chou C-H, Shrestha S, Yang C-D, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46:D296-D302.

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44-57.

Cline MS, Smoot M, Cerami E, et al. Integration of biological networks and gene expression data using cytoscape. Nat Protoc. 2007;2:2366-2382.

Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-2504.

Susaki EA, Tainaka K, Perrin D, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014;157:726-739.

Tainaka K, Kubota SI, Suyama TQ, et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell. 2014;159:911-924.

Vejnar CE, Blum M, Zdobnov EM. miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Res. 2013;41:W165-W168.

Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. Curr Stem Cell Res Ther. 2019;14:278-289.

Giorgi Silveira R, Perelló Ferrúa C, do Amaral CC, Fernandez Garcia T, de Souza KB, Nedel F. MicroRNAs expressed in neuronal differentiation and their associated pathways: systematic review and bioinformatics analysis. Brain Res Bull. 2020;157:140-148.

Zeng Z-L, Lin X-L, Tan L-L, Liu YM, Qu K, Wang Z. MicroRNAs: important regulators of induced pluripotent stem cell generation and differentiation. Stem Cell Rev Rep. 2018;14:71-81.

Ran X, Xiao C-H, Xiang G-M, Ran XZ. Regulation of embryonic stem cell self-renewal and differentiation by microRNAs. Cell Reprogram. 2017;19:150-158.

Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA. Specification of the vertebrate eye by a network of eye field transcription factors. Development. 2003;130:5155-5167.

Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A. Pax6 induces ectopic eyes in a vertebrate. Development. 1999;126:4213-4222.

Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in drosophila. Science. 1995;267:1788-1792.

Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M. Twin of eyeless, a second Pax-6 gene of drosophila, acts upstream of eyeless in the control of eye development. Mol Cell. 1999;3:297-307.

Manuel M, Pratt T, Liu M, Jeffery G, Price DJ. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance. BMC Dev Biol. 2008;8:59.

Du Z-W, Ma L-X, Phillips C, et al. miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development. 2013;140:2611-2618.

Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007;282:25053-25066.

Xu S. microRNA expression in the eyes and their significance in relation to functions. Prog Retin Eye Res. 2009;28:87-116.

Oron-Karni V, Farhy C, Elgart M, et al. Dual requirement for Pax6 in retinal progenitor cells. Development. 2008;135:4037-4047.

Lumayag S, Haldin CE, Corbett NJ, et al. Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci USA. 2013;110:E507-E516.

Busskamp V, Krol J, Nelidova D, et al. miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron. 2014;83:586-600.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace