miR-183/96/182 cluster is an important morphogenetic factor targeting PAX6 expression in differentiating human retinal organoids
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018129
MEYS CR
Czech-BioImaging large RI project
CZ.02.1.01/0.0/0.0/16_026/0008451
European Regional Development Fund - Project INBIO
MUNI/G/1391/2018
Grant Agency of Masaryk University (GAMU)
Faculty of Medicine MU
Brno Ph.D. Talent
PubMed
32875669
DOI
10.1002/stem.3272
Knihovny.cz E-zdroje
- Klíčová slova
- microRNAs, organoids, pluripotent stem cells, retina,
- Publikační typ
- časopisecké články MeSH
MicroRNAs (miRNAs), a class of small, noncoding RNA molecules represent important regulators of gene expression. Recent reports have implicated their role in the cell specification process acting as "fine-tuners" to ensure the precise gene expression at the specific stage of cell differentiation. Here, we used retinal organoids differentiated from human pluripotent stem cells (hPSCs) as a model to closely investigate the role of a sensory organ-specific and evolutionary conserved miR-183/96/182 cluster. Using a miRNA tough decoy approach, we inhibited the miR-183/96/182 cluster in hPSCs. Inhibition of the miRNA cluster resulted in an increased expansion of neuroepithelium leading to abnormal "bulged" neural retina in organoids, associated with upregulation of neural-specific and retinal-specific genes. Importantly, we identified PAX6, a well-known essential gene in neuroectoderm specification, as a target of the miR-183/96/182 cluster members. Taken together, the miR-183/96/182 cluster not only represents an important regulator of PAX6 expression, but it also plays a crucial role in retinal tissue morphogenesis.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Plastic and Aesthetic Surgery St Anne's University Hospital Brno Brno Czech Republic
Institute of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Dambal S, Shah M, Mihelich B, Nonn L. The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res. 2015;43:7173-7188.
Hollensen AK, Bak RO, Haslund D, Mikkelsen JG. Suppression of microRNAs by dual-targeting and clustered tough decoy inhibitors. RNA Biol. 2013;10:406-414.
Barta T, Peskova L, Hampl A. miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep. 2016;6:36625.
Eshtad S, Mavajian Z, Rudd SG, et al. hMYH and hMTH1 cooperate for survival in mismatch repair defective T-cell acute lymphoblastic leukemia. Oncogenesis. 2016;5:e275.
Peskova L, Cerna K, Oppelt J, Mraz M, Barta T. Oct4-mediated reprogramming induces embryonic-like microRNA expression signatures in human fibroblasts. Sci Rep. 2019;9:15759.
Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.
Hallam D, Hilgen G, Dorgau B, et al. Human-induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency. Stem Cells. 2018;36:1535-1551.
Barta T, Peskova L, Collin J, et al. Brief report: inhibition of miR-145 enhances reprogramming of human dermal fibroblasts to induced pluripotent stem cells. Stem Cells. 2016;34:246-251.
Chou C-H, Shrestha S, Yang C-D, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46:D296-D302.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44-57.
Cline MS, Smoot M, Cerami E, et al. Integration of biological networks and gene expression data using cytoscape. Nat Protoc. 2007;2:2366-2382.
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-2504.
Susaki EA, Tainaka K, Perrin D, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014;157:726-739.
Tainaka K, Kubota SI, Suyama TQ, et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell. 2014;159:911-924.
Vejnar CE, Blum M, Zdobnov EM. miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Res. 2013;41:W165-W168.
Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. Curr Stem Cell Res Ther. 2019;14:278-289.
Giorgi Silveira R, Perelló Ferrúa C, do Amaral CC, Fernandez Garcia T, de Souza KB, Nedel F. MicroRNAs expressed in neuronal differentiation and their associated pathways: systematic review and bioinformatics analysis. Brain Res Bull. 2020;157:140-148.
Zeng Z-L, Lin X-L, Tan L-L, Liu YM, Qu K, Wang Z. MicroRNAs: important regulators of induced pluripotent stem cell generation and differentiation. Stem Cell Rev Rep. 2018;14:71-81.
Ran X, Xiao C-H, Xiang G-M, Ran XZ. Regulation of embryonic stem cell self-renewal and differentiation by microRNAs. Cell Reprogram. 2017;19:150-158.
Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA. Specification of the vertebrate eye by a network of eye field transcription factors. Development. 2003;130:5155-5167.
Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A. Pax6 induces ectopic eyes in a vertebrate. Development. 1999;126:4213-4222.
Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in drosophila. Science. 1995;267:1788-1792.
Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M. Twin of eyeless, a second Pax-6 gene of drosophila, acts upstream of eyeless in the control of eye development. Mol Cell. 1999;3:297-307.
Manuel M, Pratt T, Liu M, Jeffery G, Price DJ. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance. BMC Dev Biol. 2008;8:59.
Du Z-W, Ma L-X, Phillips C, et al. miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development. 2013;140:2611-2618.
Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007;282:25053-25066.
Xu S. microRNA expression in the eyes and their significance in relation to functions. Prog Retin Eye Res. 2009;28:87-116.
Oron-Karni V, Farhy C, Elgart M, et al. Dual requirement for Pax6 in retinal progenitor cells. Development. 2008;135:4037-4047.
Lumayag S, Haldin CE, Corbett NJ, et al. Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci USA. 2013;110:E507-E516.
Busskamp V, Krol J, Nelidova D, et al. miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron. 2014;83:586-600.