Role of ciliopathy protein TMEM107 in eye development: insights from a mouse model and retinal organoid
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37863656
PubMed Central
PMC10589122
DOI
10.26508/lsa.202302073
PII: 6/12/e202302073
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- myši MeSH
- polycystická choroba ledvin * genetika MeSH
- poruchy ciliární motility * genetika metabolismus MeSH
- retina metabolismus MeSH
- retinopathia pigmentosa * metabolismus MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- TMEM107 protein, human MeSH Prohlížeč
- Tmem107 protein, mouse MeSH Prohlížeč
Primary cilia are cellular surface projections enriched in receptors and signaling molecules, acting as signaling hubs that respond to stimuli. Malfunctions in primary cilia have been linked to human diseases, including retinopathies and ocular defects. Here, we focus on TMEM107, a protein localized to the transition zone of primary cilia. TMEM107 mutations were found in patients with Joubert and Meckel-Gruber syndromes. A mouse model lacking Tmem107 exhibited eye defects such as anophthalmia and microphthalmia, affecting retina differentiation. Tmem107 expression during prenatal mouse development correlated with phenotype occurrence, with enhanced expression in differentiating retina and optic stalk. TMEM107 deficiency in retinal organoids resulted in the loss of primary cilia, down-regulation of retina-specific genes, and cyst formation. Knocking out TMEM107 in human ARPE-19 cells prevented primary cilia formation and impaired response to Smoothened agonist treatment because of ectopic activation of the SHH pathway. Our data suggest TMEM107 plays a crucial role in early vertebrate eye development and ciliogenesis in the differentiating retina.
Biology Department Fairfield University Fairfield CT USA
CEITEC Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Genetics Yale University School of Medicine New Haven CT USA
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270: 517–521. 10.1006/bbrc.2000.2473 PubMed DOI
Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: An emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7: 125–148. 10.1146/annurev.genom.7.080505.115610 PubMed DOI
Barta T, Peskova L, Hampl A (2016) miRNAsong: A web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep 6: 36625. 10.1038/srep36625 PubMed DOI PMC
Bosze B, Suarez-Navarro J, Soofi A, Lauderdale JD, Dressler GR, Brown NL (2021) Multiple roles for Pax2 in the embryonic mouse eye. Dev Biol 472: 18–29. 10.1016/j.ydbio.2020.12.020 PubMed DOI PMC
Burmeister M, Novak J, Liang MY, Basu S, Ploder L, Hawes NL, Vidgen D, Hoover F, Goldman D, Kalnins VI, et al. (1996) Ocular retardation mouse caused by Chx10 homeobox null allele: Impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 12: 376–384. 10.1038/ng0496-376 PubMed DOI
Burnett JB, Lupu FI, Eggenschwiler JT (2017) Proper ciliary assembly is critical for restricting hedgehog signaling during early eye development in mice. Dev Biol 430: 32–40. 10.1016/j.ydbio.2017.07.012 PubMed DOI PMC
Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12: 767–778. 10.1016/j.devcel.2007.03.004 PubMed DOI
Cavodeassi F, Creuzet S, Etchevers HC (2019) The hedgehog pathway and ocular developmental anomalies. Hum Genet 138: 917–936. 10.1007/s00439-018-1918-8 PubMed DOI PMC
Cela P, Hampl M, Shylo NA, Christopher KJ, Kavkova M, Landova M, Zikmund T, Weatherbee SD, Kaiser J, Buchtova M (2018) Ciliopathy protein tmem107 plays multiple roles in craniofacial development. J Dent Res 97: 108–117. 10.1177/0022034517732538 PubMed DOI PMC
Celiker C, Weissova K, Cerna KA, Oppelt J, Dorgau B, Gambin FM, Sebestikova J, Lako M, Sernagor E, Liskova P, et al. (2023) Light-responsive microRNA molecules in human retinal organoids are differentially regulated by distinct wavelengths of light. iScience 26: 107237. 10.1016/j.isci.2023.107237 PubMed DOI PMC
Chang C-F, Schock EN, Attia AC, Stottmann RW, Brugmann SA (2015) The ciliary baton: Orchestrating neural crest cell development. Curr Top Dev Biol 111: 97–134. 10.1016/bs.ctdb.2014.11.004 PubMed DOI PMC
Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–413. 10.1038/383407a0 PubMed DOI
Chinen Y, Nakamura S, Yanagi K, Kaneshi T, Goya H, Yoshida T, Satou K, Kaname T, Naritomi K, Nakanishi K (2022) Additional findings of tibial dysplasia in a male with orofaciodigital syndrome type XVI. Hum Genome Var 9: 9. 10.1038/s41439-022-00187-9 PubMed DOI PMC
Christopher KJ, Wang B, Kong Y, Weatherbee SD (2012) Forward genetics uncovers Transmembrane protein 107 as a novel factor required for ciliogenesis and Sonic hedgehog signaling. Dev Biol 368: 382–392. 10.1016/j.ydbio.2012.06.008 PubMed DOI PMC
Coles BL, Horsford DJ, McInnes RR, van der Kooy D (2006) Loss of retinal progenitor cells leads to an increase in the retinal stem cell population in vivo. Eur J Neurosci 23: 75–82. 10.1111/j.1460-9568.2005.04537.x PubMed DOI
Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472: 51–56. 10.1038/nature09941 PubMed DOI
Eshtad S, Mavajian Z, Rudd SG, Visnes T, Boström J, Altun M, Helleday T (2016) hMYH and hMTH1 cooperate for survival in mismatch repair defective T-cell acute lymphoblastic leukemia. Oncogenesis 5: e275. 10.1038/oncsis.2016.72 PubMed DOI PMC
Fiore L, Takata N, Acosta S, Ma W, Pandit T, Oxendine M, Oliver G (2020) Optic vesicle morphogenesis requires primary cilia. Dev Biol 462: 119–128. 10.1016/j.ydbio.2020.02.016 PubMed DOI PMC
Furukawa T, Kozak CA, Cepko CL (1997. a) Rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci U S A 94: 3088–3093. 10.1073/pnas.94.7.3088 PubMed DOI PMC
Furukawa T, Morrow EM, Cepko CL (1997. b) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91: 531–541. 10.1016/s0092-8674(00)80439-0 PubMed DOI
Gallagher AR, Hoffmann S, Brown N, Cedzich A, Meruvu S, Podlich D, Feng Y, Könecke V, de Vries U, Hammes H-P, et al. (2006) A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 17: 2719–2730. 10.1681/ASN.2005090979 PubMed DOI
Gonçalves J, Pelletier L (2017) The ciliary transition zone: Finding the pieces and assembling the gate. Mol Cell 40: 243–253. 10.14348/molcells.2017.0054 PubMed DOI PMC
Gorivodsky M, Mukhopadhyay M, Wilsch-Braeuninger M, Phillips M, Teufel A, Kim C, Malik N, Huttner W, Westphal H (2009) Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain. Dev Biol 325: 24–32. 10.1016/j.ydbio.2008.09.019 PubMed DOI PMC
Gu S, Zhang Y, Jin L, Huang Y, Zhang F, Bassik MC, Kampmann M, Kay MA (2014) Weak base pairing in both seed and 3’ regions reduces RNAi off-targets and enhances si/shRNA designs. Nucleic Acids Res 42: 12169–12176. 10.1093/nar/gku854 PubMed DOI PMC
Hagey DW, Muhr J (2014) Sox2 acts in a dose-dependent fashion to regulate proliferation of cortical progenitors. Cell Rep 9: 1908–1920. 10.1016/j.celrep.2014.11.013 PubMed DOI
Harris WA, Perron M (1998) Molecular recapitulation: The growth of the vertebrate retina. Int J Dev Biol 42: 299–304. PubMed
Hartill V, Szymanska K, Sharif SM, Wheway G, Johnson CA (2017) Meckel-gruber syndrome: An update on diagnosis, clinical management, and research advances. Front Pediatr 5: 244. 10.3389/fped.2017.00244 PubMed DOI PMC
Heavner W, Pevny L (2012) Eye development and retinogenesis. Cold Spring Harb Perspect Biol 4: a008391. 10.1101/cshperspect.a008391 PubMed DOI PMC
Huang K-C, Wang M-L, Chen S-J, Kuo J-C, Wang W-J, Nhi Nguyen PN, Wahlin KJ, Lu J-F, Tran AA, Shi M, et al. (2019) Morphological and molecular defects in human three-dimensional retinal organoid model of X-linked juvenile retinoschisis. Stem cell Rep 13: 906–923. 10.1016/j.stemcr.2019.09.010 PubMed DOI PMC
Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A 102: 11325–11330. 10.1073/pnas.0505328102 PubMed DOI PMC
Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426: 83–87. 10.1038/nature02061 PubMed DOI
Iglesias A, Anyane-Yeboa K, Wynn J, Wilson A, Truitt Cho M, Guzman E, Sisson R, Egan C, Chung WK (2014) The usefulness of whole-exome sequencing in routine clinical practice. Genet Med 16: 922–931. 10.1038/gim.2014.58 PubMed DOI
Irie S, Sanuki R, Muranishi Y, Kato K, Chaya T, Furukawa T (2015) Rax homeoprotein regulates photoreceptor cell maturation and survival in association with crx in the postnatal mouse retina. Mol Cell Biol 35: 2583–2596. 10.1128/MCB.00048-15 PubMed DOI PMC
Izawa I, Goto H, Kasahara K, Inagaki M (2015) Current topics of functional links between primary cilia and cell cycle. Cilia 4: 12. 10.1186/s13630-015-0021-1 PubMed DOI PMC
Kamachi Y, Uchikawa M, Collignon J, Lovell-Badge R, Kondoh H (1998) Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125: 2521–2532. 10.1242/dev.125.13.2521 PubMed DOI
Kozmik Z (2008) The role of Pax genes in eye evolution. Brain Res Bull 75: 335–339. 10.1016/j.brainresbull.2007.10.046 PubMed DOI
Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y (2015) Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun 6: 6286. 10.1038/ncomms7286 PubMed DOI
Lambacher NJ, Bruel A-L, van Dam TJP, Szymańska K, Slaats GG, Kuhns S, McManus GJ, Kennedy JE, Gaff K, Wu KM, et al. (2016) TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat Cell Biol 18: 122–131. 10.1038/ncb3273 PubMed DOI PMC
Lee JE, Gleeson JG (2011) Cilia in the nervous system: Linking cilia function and neurodevelopmental disorders. Curr Opin Neurol 24: 98–105. 10.1097/WCO.0b013e3283444d05 PubMed DOI PMC
Lupu FI, Burnett JB, Eggenschwiler JT (2018) Cell cycle-related kinase regulates mammalian eye development through positive and negative regulation of the Hedgehog pathway. Dev Biol 434: 24–35. 10.1016/j.ydbio.2017.10.022 PubMed DOI PMC
Ma Z, Qin M, Liang H, Chen R, Cai S, Huang Z, Tai G (2020) Primary cilia-dependent signaling is involved in regulating mesenchymal stem cell proliferation and pluripotency maintenance. J Mol Histol 51: 241–250. 10.1007/s10735-020-09876-7 PubMed DOI PMC
MacRae DW, Howard RO, Albert DM, Hsia YE (1972) Ocular manifestations of the Meckel syndrome. Arch Ophthalmol 88: 106–113. 10.1001/archopht.1972.01000030108028 PubMed DOI
Malcikova J, Stano-Kozubik K, Tichy B, Kantorova B, Pavlova S, Tom N, Radova L, Smardova J, Pardy F, Doubek M, et al. (2015) Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia 29: 877–885. 10.1038/leu.2014.297 PubMed DOI PMC
Marra AN, Li Y, Wingert RA (2016) Antennas of organ morphogenesis: The roles of cilia in vertebrate kidney development. Genesis 54: 457–469. 10.1002/dvg.22957 PubMed DOI PMC
Matsushima D, Heavner W, Pevny LH (2011) Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development 138: 443–454. 10.1242/dev.055178 PubMed DOI PMC
Nishiguchi S, Wood H, Kondoh H, Lovell-Badge R, Episkopou V (1998) Sox1 directly regulates the gamma-crystallin genes and is essential for lens development in mice. Genes Dev 12: 776–781. 10.1101/gad.12.6.776 PubMed DOI PMC
Peskova L, Cerna K, Oppelt J, Mraz M, Barta T (2019) Oct4-mediated reprogramming induces embryonic-like microRNA expression signatures in human fibroblasts. Sci Rep 9: 15759. 10.1038/s41598-019-52294-3 PubMed DOI PMC
Peskova L, Jurcikova D, Vanova T, Krivanek J, Capandova M, Sramkova Z, Sebestikova J, Kolouskova M, Kotasova H, Streit L, et al. (2020) miR-183/96/182 cluster is an important morphogenetic factor targeting PAX6 expression in differentiating human retinal organoids. Stem Cells 38: 1557–1567. 10.1002/stem.3272 PubMed DOI
Qin J, Lin Y, Norman RX, Ko HW, Eggenschwiler JT (2011) Intraflagellar transport protein 122 antagonizes sonic hedgehog signaling and controls ciliary localization of pathway components. Proc Natl Acad Sci U S A 108: 1456–1461. 10.1073/pnas.1011410108 PubMed DOI PMC
Reh TA, Levine EM (1998) Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 36: 206–220. PubMed
Roitbak T, Ward CJ, Harris PC, Bacallao R, Ness SA, Wandinger-Ness A (2004) A polycystin-1 multiprotein complex is disrupted in polycystic kidney disease cells. Mol Biol Cell 15: 1334–1346. 10.1091/mbc.e03-05-0296 PubMed DOI PMC
Shaheen R, Almoisheer A, Faqeih E, Babay Z, Monies D, Tassan N, Abouelhoda M, Kurdi W, Al Mardawi E, Khalil MMI, et al. (2015) Identification of a novel MKS locus defined by TMEM107 mutation. Hum Mol Genet 24: 5211–5218. 10.1093/hmg/ddv242 PubMed DOI
Shylo NA, Christopher KJ, Iglesias A, Daluiski A, Weatherbee SD (2016) TMEM107 is a critical regulator of ciliary protein composition and is mutated in orofaciodigital syndrome. Hum Mutat 37: 155–159. 10.1002/humu.22925 PubMed DOI
Shylo NA, Emmanouil E, Ramrattan D, Weatherbee SD (2020) Loss of ciliary transition zone protein TMEM107 leads to heterotaxy in mice. Dev Biol 460: 187–199. 10.1016/j.ydbio.2019.12.014 PubMed DOI PMC
Slaats GG, Wheway G, Foletto V, Szymanska K, van Balkom BWM, Logister I, Den Ouden K, Keijzer-Veen MG, Lilien MR, Knoers NV, et al. (2015) Screen-based identification and validation of four new ion channels as regulators of renal ciliogenesis. J Cell Sci 128: 4550–4559. 10.1242/jcs.176065 PubMed DOI PMC
Tang T, Li L, Tang J, Li Y, Lin WY, Martin F, Grant D, Solloway M, Parker L, Ye W, et al. (2010) A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 28: 749–755. 10.1038/nbt.1644 PubMed DOI
Tantri A, Vrabec TR, Cu-Unjieng A, Frost A, Annesley WH, Donoso LA (2004) X-Linked retinoschisis: A clinical and molecular genetic review. Surv Ophthalmol 49: 214–230. 10.1016/j.survophthal.2003.12.007 PubMed DOI
Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH (2006) SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 20: 1187–1202. 10.1101/gad.1407906 PubMed DOI PMC
Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287: 2032–2036. 10.1126/science.287.5460.2032 PubMed DOI
van Adelsberg J (2000) Polycystin-1 interacts with E-cadherin and the catenins--clues to the pathogenesis of cyst formation in ADPKD? Nephrol Dial Transplant 15: 1–2. 10.1093/ndt/15.1.1 PubMed DOI
Waters AM, Beales PL (2011) Ciliopathies: An expanding disease spectrum. Pediatr Nephrol 26: 1039–1056. 10.1007/s00467-010-1731-7 PubMed DOI PMC
Wheway G, Parry DA, Johnson CA (2014) The role of primary cilia in the development and disease of the retina. Organogenesis 10: 69–85. 10.4161/org.26710 PubMed DOI PMC
Wheway G, Nazlamova L, Hancock JT (2018) Signaling through the primary cilium. Front Cell Dev Biol 6: 8. 10.3389/fcell.2018.00008 PubMed DOI PMC
Wiegering A, Petzsch P, Köhrer K, Rüther U, Gerhardt C (2019) GLI3 repressor but not GLI3 activator is essential for mouse eye patterning and morphogenesis. Dev Biol 450: 141–154. 10.1016/j.ydbio.2019.02.018 PubMed DOI
Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350: 151–164. 10.1056/NEJMra022161 PubMed DOI
Yanardag S, Pugacheva EN (2021) Primary cilium is involved in stem cell differentiation and renewal through the regulation of multiple signaling pathways. Cells 10: 1428. 10.3390/cells10061428 PubMed DOI PMC
Zhang S, Cui W (2014) Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cell 6: 305–311. 10.4252/wjsc.v6.i3.305 PubMed DOI PMC
Zhao L, Saitsu H, Sun X, Shiota K, Ishibashi M (2010) Sonic hedgehog is involved in formation of the ventral optic cup by limiting Bmp4 expression to the dorsal domain. Mech Dev 127: 62–72. 10.1016/j.mod.2009.10.006 PubMed DOI